Prepared for:

CITE/CITY OF CLARENCE-ROCKLAND 1560 Laurier Street Rockland, Ontario, K4K 1P7 Prepared by:

J.L. RICHARDS & ASSOCIATES LIMITED 343 Preston Street Tower II, Suite 1000 Ottawa, Ontario K1S 1N4 Tel: 613-728-3571 Fax: 613-725-6012

City of Clarence-Rockland

Rockland West Secondary Plan – Phase 2 Report

Value through service and commitment

Table of Contents

1.0	Introd	uction	4
	1.1	Background	4
	1.2	Class Environmental Assessment Process	6
	1.3	Secondary Plan	7
	1.4	Project Team	7
	1.5	Methodology	8
	1.6	Phase 2 Problem and Opportunity Statement	8
2.0	Phase	e 2 – Identification and Evaluation of Alternative Solutions	8
	2.1	Evaluation and Selection Methodology	8
	2.2	Initial Screening of Alternatives	9
		2.2.1 Summary of Phase 1 Findings	12
3.0	Trans	portation	13
	3.1	Context	13
	3.2	Horizon Years and Analysis Scenarios	13
	3.3	Traffic Volumes	13
	3.4	Intersection Capacity Analysis – Existing Conditions	14
	3.5	Background Network Travel Demands	17
	3.6	Concept Option 1	
	3.7	Roundabout Conceptual Design	
	3.8	Roundabout Operational Analysis	
	3.9	Assessment of Existing Traffic System with Total Projected Vol	umes for
		Concept Option 1	
	3.10	Concept Option 3	43
		3.10.1 Transportation	43
	3.11	Roundabout Conceptual Design	48
	3.12	Roundabout Operational Analysis	48
	3.13	Assessment of Existing Traffic System with Total Projected Vol	umes for
		Concept Option 3	49
4.0	Water	Servicing	54
	4.1	Concept Option 1	54
	4.2	Concept Option 2	56
5.0	Sanita	ary Servicing	58
	5.1	Concept Option 1	58
	5.2	Concept Option 3	58
6.0	Storm	Water	60
	6.1	Concept Option 1	60
	6.2	Concept Option 3	61
7.0	Evalua	ation of Detailed Solution	63
	7.1	Evaluation of Concept Options	63
	7.2	Transportation Findings and Recommendations	65
8.0	Public	and Stakeholder Consultation	66
	8.1	Stakeholder Consultation	66
	8.2	Public Information Centre	66
9.0	Projec	ct Description	69
	9.1	Project Overview	69
	9.2	Project Phasing	69
		, ,	
	9.3	Impacts on the Natural, Social and Economic Environments	70
	9.3 9.4	Impacts on the Natural, Social and Economic Environments Permits and Approvals	70 <u>7</u> 2

List of Figures

Figure 1: Map of the Secondary Plan Lands Original (Black) and Revised (Red) Boundaries Figure 2: Rocklands Secondary Plan Land-use Concept Option 1 Figure 3: Rocklands Secondary Plan Land-use Concept Option 2	5 .10 .11
Figure 4: Rocklands Secondary Plan Land-use Concept Option 3	.12
Figure 5: Existing 2023 Venicular Volumes AM(PM)	.14
Figure 6: Location of Planned Transportation Network Improvements	.17
Figure 7: 2045 County Road 17 Background Growth	.18
Figure 8: 2055 County Road 17 Background Growth	.19
Figure 9: Planned and On-going Developments	.20
Figure 10: Other Planned Developments - Traffic Volumes	.21
Figure 11: 2024 County Road 17 Background Traffic Volumes	.22
Figure 12: 2045 County Road 17 Background Plus Planned Developments Traffic Volumes	.23
Figure 13: 2055 County Road 17 Background Plus Planned Developments Traffic Volumes	.24
Figure 14: Option 1 'New' Secondary Plan Site-Generated Traffic	.35
Figure 15: 2045 Total Projected Traffic Volumes – Option 1	.36
Figure 16: 2055 Total Projected Traffic Volumes – Option 1	.37
Figure 17: Option 3 'New' Secondary Plan Site-Generated Traffic	.46
Figure 18: 2045 Total Projected Traffic Volumes – Option 3	.47
Figure 19: 2055 Total Projected Traffic Volumes – Option 3	.48
Figure 20: Phasing of Preferred Solution	.70

List of Tables

Table 1: Detailed Evaluation Impact Level and Colouring System Table 2: Statistics for Concept Options 1.4	9
Table 2: Statistics for Concept Options 1-4	9
Table 4: Planned Transportation Network Improvements	
Table 5: Other Planned Developments Summary	19
Table 6: Projected County Road 17 Background Plus Planned Developments Traffic Growth .	24
Table 7: Study Area Intersection Operations - 2024 Background Conditions	25
Table 8: Study Area Intersection Operations - 2045 Background Conditions	27
Table 9: Study Area Intersection Operations - 2055 Background Conditions	28
Table 10: Statistics for Secondary Plan Concept Options 1 and 3	30
Table 11: ITE Peak Hour Trip Generation Rates	30
Table 12: Option 1 Modified Peak Period Person Trips	31
Table 13: Option 1 Projected Modal Site Generated Trips – Business Park	32
Table 14: Option 1 Projected Modal Site Generated Trips – Service Commercial & Commer	cial
Core	33
Table 15: Option 1 Projected Modal Site Generated Trips – Medium Density Residential	33
Table 16: Option 1 Projected Modal Site Generated Trips – High Density Residential	34
Table 17: Option 1 Projected Modal Site Generated Trips	34
Table 18: Roundabout Design Parameters	38

Table 19: Option 1 SIDRA Roundabout Analysis Results	38
Table 20: 2045 Total Projected Operations – Option 1	39
Table 21: 2055 Total Projected Operations – Option 1	41
Table 22: Option 3 Modified Peak Period Person Trips	43
Table 23: Option 3 Projected Modal Site Generated Trips – Business Park	44
Table 24: Option 3 Projected Modal Site Generated Trips – Service Commercial	44
Table 25: Option 3 - Projected Modal Site Generated Trips – Medium Density Residential	44
Table 26: Option 3 Projected Modal Site Generated Trips	45
Table 27: Option 3 SIDRA Roundabout Analysis Results	49
Table 28: 2045 Total Projected Operations – Option 3	50
Table 29: 2055 Total Projected Operations – Existing Intersections – Option 3	51
Table 30: Option 1 Estimated Domestic Demands	54
Table 31: Option 1 Hydraulic Boundary Conditions	55
Table 32: Option 3 Estimated Domestic Demands	56
Table 33: Option 3 Hydraulic Boundary Conditions	56
Table 34: Option 1 Proposed Storm Water Management Facilities	60
Table 35: Option 3 Proposed Stormwater Management Facilities	61
Table 36: Summary of Evaluation Criteria	63
Table 37: Evaluation Matrix	64
Table 38: Summary of PIC Comments	66

List of Appendices

- Appendix A: Phase 1 Report
- Appendix B: Detailed Turning Movement Counts
- Appendix C: Synchro Analysis Results for Existing and Background Conditions
- Appendix D: Roundabout Feasibility Screening Tool
- Appendix E: Roundabout Traffic Flow Sheets
- Appendix F: Roundabout Conceptual Designs
- Appendix G: SIDRA Operational Analysis Results
- Appendix H: Synchro Analysis Results for Total Projected Conditions
- Appendix I: Domestic Water Demands, Boundary Conditions, and Hydraulic Modelling Results
- Appendix J: Sanitary Sewer Design Sheets
- Appendix K: Storm Water Pond Sizing
- Appendix L: Stakeholder Consultation
- Appendix M: Public Information Centre

1.0 Introduction

1.1 Background

The Rockland West Secondary Plan (RWSP) lands were identified for development during the 2006 United Counties of Prescott-Russel (UCPR) Official Plan review. Within the UCPR Official Plan the lands are designated as "Urban Policy Area". Lands under this designation are intended to absorb a significant portion of population growth within the counties. Within the Official Plan of the Urban Area of the City of Clarence-Rockland (the City) the RWSP lands are designated "Special Study Area", and are further zoned as "Special Study Area 1 (SSA1)" pursuant to Zoning By-law 2016-10 (note following a slight re-adjustment to the SSA1 boundary a section falls outside the current urban limits and are therefore zoned Rural). For the remainder of the Phase 2 report the RWSP lands will be referred to as SSA1.

Starting with a Notice of Commencement and landowners meeting, the City initiated the Rockland West Secondary Plan in December 2021 to:

- establish a policy framework for the lands;
- to provide the basis for future development; and,
- to ensure the efficient use of the land and infrastructure.

Planning Act and Municipal Class Environmental Assessment (EA) processes are required to implement the Rockland West Secondary Plan.

As part of the Municipal Class EA process, meetings were held with landowners in the RWSP area on December 22nd, 2021, and April 7th, 2022. These meetings provided landowners with an opportunity to provide input on the process and any findings from the supporting studies, which included:

- the market study by Shore-Tanner and Associates;
- environmental screening report by Bowfin Environmental Consulting (now CIMA+); and
- the existing conditions report as part of Phase 1 of the EA process.

Meetings with the landowners informed a boundary change for SSA1 which differed from the "Urban Policy Area" boundary identified in the UCPR Official Plan and the "Special Study Area 1" boundary in the Official Plan of the Urban Area of the City of Clarence-Rockland. The changes resulted in a boundary limit that acknowledged the existing lot fabric, the bottom of the ridge, wooded areas, and the existing and continued use of parcels for agricultural purposes. The boundary change added 13.5 hectares of land to the existing 41.1 ha of land identified as "Special Study Area 1" in the Official Plan of the Urban Area of Clarence-Rockland, for a total land area of approximately 54.6 ha making up the study area, SSA1. The land boundary adopted in the current Official Plan of the Urban Area of the City of Clarence-Rockland is outlined in black in Figure 1 whereas the adjusted SSA1 boundary is outlined in red in Figure 1, the latter is the focus of this report.

Figure 1: Map of the Secondary Plan Lands Original (Black) and Revised (Red) Boundaries

On April 20th, 2022, City staff presented the findings of the various studies and recommended a list of land uses for SSA1. Council approved the boundary change as presented in report "PE2022-074", August 3rd, 2022, and the vision that this area be developed primarily for business park or similar uses.

The Phase 1 Report was prepared to summarize the findings from the first phase of the EA process and was used as a basis for the identification and evaluation of alternative options during Phase 2. The Phase 2 report was prepared to identify a preferred direction for future development within SSA1.

Specifically, the Phase 2 Report has been prepared to address the following key aspects:

- To summarize background information related to the City's water servicing and transportation infrastructure within SSA1 including water demands, growth projections, and build-out planning horizons.
- To identify system constraints associated with the existing potable water storage system and to establish a problem and opportunity statement;
- To identify and evaluate possible alternative solutions to address the problem and opportunity statement in terms of overall feasibility, ability to address the problem, and potential impacts to the surrounding environment;
- To identify preliminary design concepts for the preferred solution;
- To identify environmental impacts and mitigation measures of the preferred solution, and
- Consult with agencies, public and other stakeholders throughout the process.

1.2 Class Environmental Assessment Process

The Ontario Environmental Assessment Act (EA Act), enacted in 1976, formally recognizes the Municipal Class Environmental Assessment (Class EA) process and outlines requirements for EA approval. The Municipal Class EA applies to municipal infrastructure projects, including roads, water, and wastewater projects. To ensure that environmental impacts and effects are considered for each project per the EA Act, proponents are required to generally follow the planning process set out in the Municipal Class EA Guidelines, prepared by the Municipal Engineers Association (MEA) (2023) (www.municipalclassea.ca). The Class EA process includes the following stages:

- Phase 1: Problem and opportunity identification.
- Phase 2: Identification and evaluation of alternative solutions to determine a preferred solution to the problem or opportunity. This Phase also compiles an environmental 'inventory', identifies impacts, and outlines mitigation measures.
- Phase 3: Identification and evaluation of design concepts for the preferred solution. A detailed evaluation of the environmental effects and mitigation measures will be addressed during this project Phase.
- Phase 4: Complete and place Environmental Study Report on Public Record. The Report will document Phases 1 through 3 and summarize the consultation undertaken throughout the planning process and is considered valid for a 10-year period.
- Phase 5: Implementation and monitoring.

Since projects may vary in their environmental impact, they are classified in terms of the following schedules:

- Schedule 'A' projects usually have minimal environmental effects and generally include normal or emergency operational and maintenance activities. These projects are pre-approved under the Class EA planning process. Projects within this category are subject to Phases 1 and 5.
- Schedule 'A+' projects are pre-approved projects similar to Schedule 'A', however, the public is to be advised prior to project implementation.
- Schedule 'B' projects have potential for some adverse environmental impacts and, therefore, the proponent is required to proceed through a screening process, including consultation with affected parties. Generally, these projects include improvements and minor expansions to existing facilities. Projects within this category are subject to Phases 1, 2 and 5.
- Schedule 'C' projects have potential for greater environmental impacts and are subject to all five (5) Class EA Phases. Generally, these projects include the construction of new facilities and major expansions to existing facilities.

1.3 Secondary Plan

The Rockland West Secondary Plan is a new Secondary Plan that will be added to Section 8 of the Official Plan of the Urban Area for the City of Clarence-Rockland. It will be a land use planning policy document intended to ensure that future growth occurs in an efficient, orderly, and sustainable manner if adopted by the City of Clarence-Rockland's Council under authority of Section 16 of the Planning Act. The purpose of this Secondary Plan will be to provide area-specific policy direction to guide development within these lands over the next 20 years.

As mentioned previously, the SSA1 was identified as "Urban Policy Area" within the UCPR Official Plan and the City of Clarence-Rockland designated and zoned these lands to "Special Study Area". Note the revised SSA1 boundary is identified in the latest UCPR Official Plan and the new boundary will be reflected as part of the Official Plan Amendment (OPA) to approve this Secondary Plan. The intent of the "Special Study Area" designation is to allow for further study to support the development of a Secondary Plan to provide land use policies and direction. In the interim, existing uses are permitted to continue, but no new uses are permitted as per the City of Clarence-Rockland Zoning By-law 2016-10.

Development applications in the Rockland West Secondary Plan will be required to conform with the policies of this Secondary Plan, as well as the City of Clarence-Rockland Official Plan and the UCPR Official Plan.

1.4 Project Team

The following Project Team was involved in carrying out this Class EA:

Proponent: Cite/City of Clarence-Rockland

1560 Laurier Street Rockland, Ontario, K4K 1P7 Telephone: (613) 446-6022

Prime Consulting Engineer: J.L. Richards & Associates Limited

343 Preston Street Tower II, Suite 1000 Ottawa, Ontario K1S 1N4 Telephone: (613) 725-3571

Sub Consultant: Bowfin Environmental Consulting (now CIMA+)

168 Montreal St. Cornwall, Ontario K6H 1B3 Telephone: (613) 935-6139

Sub Consultant: Shore-Tanner & Associates

148 Colonnade Road South Suite 202 Ottawa, Ontario K2E 7R4 Telephone: (613) 224-8484

The City, as the Proponent, retained JLR to undertake the Class EA Secondary Plan component of the project in December 2021 and has actively participated in directing and administering this

Class EA. The City was also responsible for issuing notices to the public and communicating with stakeholder agencies. JLR provided project coordination, undertook technical reviews and investigations, advised/liaised with stakeholders, prepared the Phase 1 and Phase 2 Reports, prepared the Secondary Plan and related Official Plan Amendment, chaired project meetings, and organized and attended the Public Information Centre (PIC).

1.5 Methodology

Phase 1 of this Class EA involved the evaluation of existing watermains, sanitary sewers, stormwater infrastructure, and transportation and transit networks in the vicinity of SSA1, and the establishment and initial evaluation of land-use solutions for SSA1. A Problem/Opportunity Statement was generated to serve as the basis for Phase 2. The Phase 1 Report is attached in Appendix A.

Phase 2 of this Class EA evaluates alternatives to determine a preferred servicing solution to address the Problem/Opportunity Statement identified in Phase 1. Transportation simulations were developed to estimate the projected traffic conditions in SSA1 following development and hydraulic modelling was used to simulate the impact of each alternative servicing solution on the distribution system. Section 2.0 summarizes Phase 2 activities completed.

1.6 Phase 2 Problem and Opportunity Statement

The following Problem / Opportunity Statement has been used as the basis for proceeding to Phase 2 of this Class EA:

The Secondary Plan will follow the Municipal Class Environmental Assessment (EA) and Planning Act process to establish a coordinated planning solution for development of this area. An amended Secondary Plan could present economic opportunities for the city and its residents through the establishment of acceptable land use designations leading to an increase in business and commerce in the region. In developing the Secondary Plan, there is an opportunity to consider impacts to neighboring properties, impacts to natural and social environment, climate change, and growth opportunities.

2.0 Phase 2 – Identification and Evaluation of Alternative Solutions

The main objective of Phase 2 of the Class EA was to identify and evaluate possible alternative solutions to the Problem/Opportunity Statement identified in Phase 1. All reasonable potential solutions to the problem, including the 'Do Nothing' option, were considered. Class EAs for water distribution system projects generally result in the identification and review of a broad range of solutions. It should be noted that the objective of Phase 2 was to focus on determining an overall "generalized solution" to the problem and not necessarily all of the intricate details which are typically further explored and developed during Phase 5 of a Schedule 'B' Class EA, referred to as Implementation (i.e., preliminary and detailed design stage). The following sections describe the evaluation and selection methodology for reviewing alternative solutions, the identification and review of alternatives solutions, and the identification of a preferred servicing solution.

2.1 Evaluation and Selection Methodology

To facilitate the evaluation and selection of the preferred solutions during Phase 2, a transparent and logical three-part assessment process was established. This process included:

- 1. Initial screening of alternative solutions;
- 2. Detailed evaluation of screened alternatives; and
- 3. Selection of a preferred alternative.

The first evaluation stage was conducted as part of Phase 1 activities and considered the overall feasibility of the potential solutions and identified those alternatives that fully address the Problem/Opportunity Statement. This step prevents unrealistic alternatives from being carried forward to the detailed evaluation stage.

Based on the initial screening process, a detailed assessment of the shortlisted alternatives was conducted. Evaluation criteria were developed based on a review of the background information, experience on similar assessments and in consultation with City staff. The evaluation was conducted using criterion in the following four major criteria categories:

- Natural and Cultural Environment;
- Engineering and Technical Considerations;
- Social and Community Well Being; and
- Economic Environment.

Each criterion was assigned a colour to reflect its level of impact relative to other criteria. The relative level of impact for each criterion for each potential solution was then assessed based on the colour weighting system summarized in Table 1. The option that has the least negative impact or has the strongest positive impact was recommended as the preferred solution and presented to stakeholders to solicit input before finalizing.

Impact Level	Colour	Relative Impact
Strong Positive Impact	Green	Preferred
Minor Impact	Yellow	Less Preferred
Strong Negative Impact	Red	Least Preferred

Table 1: Detailed Evaluation Impact Level and Colouring System

2.2 Initial Screening of Alternatives

The general solutions that were considered for initial screening were concept options 1 to 4, as can be seen in **Figure 2**, Figure 3, and Figure 4 below, and the option to 'Do Nothing' (per the MEA Class EA Guidelines). The statistics for options 1 to 4 are summarized in Table 2 below.

	Table 2:	Statistics	for	Concept	Options	1-4
--	----------	-------------------	-----	---------	---------	-----

Land Use	Option 1	Option 2	Option 3	Option 4 'Do Nothing'
Overall Area (ha)	54.6	54.6	54.6	54.6
Bunsiness Park (ha)	16.3	32.8	46.7	0
Service Commercial (ha)	14.3	0	1.4	0
Commercial Core (ha)	15.9	13.7	0	0
Future Development Overlay (ha)	0	8.1	0	0
Medium Density Residential (ha)	4.0	0	6.5	0

City of Clarence-Rockland Rockland West Secondary Plan – Phase 2 Report

Land Use	Option 1	Option 2	Option 3	Option 4 'Do Nothing'
High Density Residential (ha)	4.1	0	0	0
Special Study Area (ha)	0	0	0	54.6

Figure 2: Rocklands Secondary Plan Land-use Concept Option 1

City of Clarence-Rockland Rockland West Secondary Plan – Phase 2 Report

Figure 3: Rocklands Secondary Plan Land-use Concept Option 2

Figure 4: Rocklands Secondary Plan Land-use Concept Option 3

2.2.1 Summary of Phase 1 Findings

The Secondary Plan Phase 1 report (Appendix A) evaluated the four concept options to shortlist the alternative solutions as per the evaluation criteria described in Section 2.1. From this analysis, concept options 1 and 3 were selected to proceed to the detailed analysis stage. These concept options were selected as they most align with the objectives of the Secondary Plan, address gaps outlined in the Market Study, and align with the vision of City Council. The shortlisted options would increase the amount of business park and commercial space available in Clarence-Rockland which are land-uses with high-demand in the region and would provide opportunities for medium to high density residential development.

The detailed analysis phase consisted of developing and comparing high-level transportation, water, sanitary, and stormwater servicing solutions. The analyses were supported by the existing conditions review completed in Phase 1. From the detailed analysis, a single preferred solution was recommended as the suggested land-use breakdown for SSA1.

Each servicing solution carried forward for detailed evaluation was reviewed in terms of its impact on the natural and cultural environment, engineering and technical considerations, social and community well-being, and economic environment in accordance with the evaluation methodology described in Section 2.1. Modelling of each servicing solution was undertaken for the existing and future demand scenarios.

3.0 Transportation

3.1 Context

The following studies and plans were consulted to understand the context of this transportation study:

- Expansion Lands Secondary Plan Transportation Impact Assessment, June 2019 prepared by CIMA+
- Morris/Rockland Transportation Impact Study, December 2018 prepared by Castleglenn Consultants Inc.
- St-Jean Street Montée Poupart Side Road Municipal Environmental Assessment (Draft Report), March 2024 prepared by Castleglenn Consultants Inc.
- Multi-Modal Transportation Master Plan The City of Clarence-Rockland (Draft Final Report), June 2019 prepared by Stantec
- Environmental Study Report Ottawa Road 174/County Road 17 Environmental Assessment Study, June 2016 prepared by AECOM

3.2 Horizon Years and Analysis Scenarios

For the purpose of this assessment, the following development timeline was assumed for the preferred concept plan:

- 2025 construction start year
- 2045 estimated build-out, 20 years from the construction start year
- 2055 10 years beyond build-out

Therefore, the following scenarios will be analyzed for the study area intersections:

- 2023 existing traffic conditions
- 2024 background traffic conditions (i.e. background traffic at the time of the study)
- 2045 background traffic conditions (i.e. background traffic at build-out)
- 2045 total traffic conditions (i.e. background traffic + new trips at build-out)
- 2055 background traffic conditions (i.e. background traffic at build-out plus 10 years)
- 2055 total traffic conditions (i.e. background traffic + new trips at build-out plus 10 years)

3.3 Traffic Volumes

Detailed turning movement counts (TMCs) were collected between June 15th and June 23rd, 2021, and are provided in Appendix B.

It should be noted that at the time of data collection the province had just moved to the first stage of the Ontario three-staged COVID-19 reopening plan prior to field observations. While the province still encouraged working from home as much as possible, the first stage allowed for non-essential retail operations to open. Therefore, it should be understood that the TMCs conducted between June 15th and June 23rd, 2021 do not represent a sample of typical conditions. Based on

this, a pandemic projection factor of 50% was used to conservatively project the traffic volumes for typical conditions. This factor was based on 2023 traffic counts on County Road 17 provided by the UCPR. To determine the 2023 existing traffic volumes, the projection factor was applied to all of the turning movements in the study area. The following Figure 5 depicts the weekday morning and afternoon peak hour vehicular movements at SSA1 intersections.

Figure 5: Existing 2023 Vehicular Volumes AM(PM)

3.4 Intersection Capacity Analysis – Existing Conditions

Using the intersection capacity analysis software Synchro (v11), SSA1 intersections were assessed in terms of vehicle delay (seconds), 95th percentile queues (meters), a volume-to-capacity ratio (V/C ratio) and a corresponding Level of Service (LOS). It should be noted that the overall performance of a signalized intersection is calculated as a weighted V/C ratio and assigned a corresponding LOS, and individual vehicular movements are assigned a LOS based on their respective V/C ratio. The overall performance of an unsignalized intersection is a ratio output from Synchro which is based on the Highway Capacity Manual Intersection Capacity

Utilization (ICU) method and is assigned a corresponding LOS. The LOS of individual vehicular movements at unsignalized intersections are also assigned a LOS based on their respective V/C ratio.

The following Table 3 summarizes existing conditions at SSA1 intersections, in the absence of any development. Detailed Synchro output data for existing conditions is provided in Appendix C.

		Storage		AM Pea	ak Hour		PM Peak Hour			
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
	Carm	nen Berger	on/Coun	ty Road	17 - Actu	uated-Uno	coordina	ted Sign	al	
EBT	1 T	-	0.65	17.2	В	134	1.84	404.3	F	#611.1
EBR	1 R	80	0.07	3.0	А	6	0.38	8.6	А	40
WBL	1 L	125	0.18	5.3	Α	9	0.69	33.2	В	42
WBT	1 T	-	0.91	23.9	E	#297.1	0.84	18.1	D	#262.7
NBL	1 L	-	0.55	43.4	А	48	0.58	48.9	А	41
NBR	1 R	-	0.17	12.1	А	10	0.52	11.6	А	18
	Overall		0.79	21.7	С	-	1.66	203.2	F	-
		Ca	rmen Be	ergeron/F	Richelieu	- Unsign	alized			
EBL	1 L	-	0.04	7.6	А	1	0.03	9.1	А	1
EB	1 T/R	-	0.02	7.0	А	1	0.07	8.9	А	2
WBL	1 L	-	0.00	7.4	А	0	0.03	8.8	А	1
WB	1 T/R	-	0.21	7.4	А	6	0.39	11.0	А	14
NB	1 T/L &1 T/R	-	0.03	7.0	А	1	0.11	8.3	А	3
SB	1 T/L	-	0.16	8.2	А	1	0.73	21.8	С	47
SBR	1 R	-	0.03	6.3	А	1	0.05	7.0	А	2
	Overall		0.36	7.5	Α	-	0.54	15.7	Α	-
			Poupa	art/Riche	lieu - Un	signalize	d			
EBL	1 L	20	0.08	8.0	А	2	0.28	11.8	А	8
EB	1 T/R	-	0.05	6.8	А	2	0.40	12.1	А	14
WB	1 L/T/R	-	0.10	8.1	А	2	0.19	11.4	А	5
NB	1 L/T/R	-	0.19	8.6	А	5	0.52	15.3	А	22
SB	1 L/T/R	-	0.14	7.9	А	4	0.55	15.4	А	25
Overall			0.32	8.1	Α	-	0.64	13.9	В	-
		Pc	oupart/W	almart D	riveway	- Unsigna	alized			
EB	1 L/R	-	0.03	8.9	А	1	0.25	15.1	А	8
NB	1 T/L	-	0.02	1.4	А	1	0.06	2.0	А	2
SB	1 T/R	-	0.05	0.0	A	0	0.18	0.0	А	0

					Storage		AM Pea	ak Hour			PM Pea	ak Hour	
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)			
Overall			0.26	1.7	Α	-	0.56	3.1	Α	-			

As shown in Table 3, SSA1 existing intersections are currently operating with an overall LOS 'C' or better during weekday morning and afternoon peak hours, with the exception of the Carmen Bergeron/County Road 17 intersection, which is currently operating over capacity with an overall LOS 'F' during the afternoon peak hour.

With regard to 'critical' movements (i.e., the worst performing movement at each intersection per peak period), they are operating with a LOS 'D' or better during both peak hours with the exception of the eastbound through movement at the Carmen Bergeron/County Road 17 intersection, operating with a LOS 'F' during the afternoon peak hour.

In terms of 95th percentile queues, existing storage capacity is not exceeded.

Planned Transportation Network Improvements

A summary of the previously planned transportation network improvements as outlined in the aforementioned plans and studies associated with SSA1 (Section 3.1) can be seen in Table 4. It is assumed that these planned improvements would be completed by the build-out year, 2045. As such, the roadway network with the following improvements have been applied in all future background and total analysis for the horizon years 2045 and 2055. This is consistent with other Transportation Impact Study (TIS) reports for the developments identified in Table 5.

ID	Intersection Improvements	Source
Carmen Ber	rgeron/County Road 17	
CTR-1	Widening of County Road 17 from two to four lanes (two per direction) on both sides of the road within Rockland	Ottawa Road 174/County Road 17 Environmental Study Report – AECOM 2016
Carmen Ber	rgeron/Richelieu	
CTR-2	Upgrade existing stop-controlled intersection with a signalized intersection.	Stantec MMTMP 2019
Poupart/Ric	helieu	
CTR-3	Upgrade existing stop-controlled intersection with a signalized intersection.	Stantec MMTMP 2019
CTR-4	Widening of Poupart Road between Richelieu Street and St. Jean Street from two lanes to four lanes	Castleglenn 2018 - Morris Village Development TIS
Poupart/Wa	Imart Driveway	
CTR-4	Widening of Poupart Road between Richelieu Street and St. Jean Street from two lanes to four lanes	Castleglenn 2018 - Morris Village Development TIS
Poupart Ext	ension/County Road 17	

Table 4: Planned Transportation Network Improvements

CTR-5	Roadway extension west of Poupart Road to connect with County Road 17	Castleglenn 2018 - Morris Village Development TIS
		Development no

With regards to CTR-5, the roadway extension at County Road 17 is designated as 'Street 1' in this study. Note that the new Street 1/County Road 17 intersection design was proposed as a signalized intersection. It is assumed that the Street 1/County Road 17 intersection would consist of two through lanes with auxiliary turning lanes in the eastbound and westbound approaches, similar to the future lane configuration for the Carmen Bergeron/County Road 17. The northbound approach will consist of a single left-turn lane and right-turn lane. However, alignment and design are to be confirmed at the detailed design stage of County Road 17 widening.

Figure 6 depicts the locations for the planned transportation network improvements.

Figure 6: Location of Planned Transportation Network Improvements

3.5 Background Network Travel Demands

General Background Growth

To be consistent with previous studies within the study area, and based on consultation with UCPR staff, a 2% per annum growth rate was applied to County Road 17 to capture projected impacts of background traffic. The growth rate was applied to the County Road 17 eastbound and westbound through movements only. The resulting general background growth volumes for 2045 and 2055 are shown in Figure 7 and Figure 8.

Figure 7: 2045 County Road 17 Background Growth

Figure 8: 2055 County Road 17 Background Growth

Other Planned Developments

In addition to the general background growth, planned and on-going developments within and surrounding the SSA1 were identified, Table 5 outlines the available information for each development. It has been assumed that all the developments in Table 5 will be constructed by the horizon year, 2045, for the purposes of estimating future traffic volumes.

ļ
/

Development	Туре	Area	Development Projection
Morris Other Planned	Residential	430 ha	Short Term: 2023 to 2028
Developments			Medium Term: 2028 to 2038
			Ultimate build-out: Undefined
Secondary Plan	Residential	137.23 ha	Phase 1: 2029
Lands	Commercial		Phase 2: 2039
	Institutional		Full build-out: 2044

The location of the planned and ongoing developments within and surrounding SSA1 are shown in Figure 9.

City of Clarence-Rockland Rockland West Secondary Plan – Phase 2 Report

Figure 9: Planned and On-going Developments

The trips generated from the developments listed in Table 5 were extracted from their respective Transportation Impact Assessment reports and are included in the background traffic volumes for each horizon. Figure 10 illustrates the traffic volumes associated from these two planned developments.

Figure 10: Other Planned Developments - Traffic Volumes

In the absence of any new or background developments and a 2% background traffic growth rate on County Road 17, the following Figure 11 depicts the projected background traffic volumes for the 2024 horizon year.

Figure 11: 2024 County Road 17 Background Traffic Volumes

In the absence of new developments for the Secondary Plan Lands, the following Figure 12 presents the background volumes for the horizon year of 2045, which were derived by superimposing 2045 County Road 17 general background traffic volumes onto traffic volumes from other planned developments (i.e. summing together volumes depicted in Figure 7 and Figure 10, resulting in Figure 12).

Figure 12: 2045 County Road 17 Background Plus Planned Developments Traffic Volumes

In the absence of new developments for the Secondary Plan Lands, the following Figure 13 presents the background volumes for the horizon year of 2055, which were derived by superimposing 2055 general background traffic volumes on County Road 17 onto traffic volumes from other planned developments (i.e. summing together volumes depicted in Figure 8 and Figure 10, resulting in Figure 13).

Figure 13: 2055 County Road 17 Background Plus Planned Developments Traffic Volumes

The following Table 6 summarizes the projected background traffic volumes on County Road 17, in the absence of new development from the Rockland West Secondary Plan for each horizon year.

Approach Leg of	20	24	20	45	2055					
Intersection	AM	РМ	АМ	РМ	АМ	РМ				
Carmen Bergeron/County Road 17 - Actuated-Uncoordinated Signal										
EB	695	1764	1862	4672	2074	5166				
WB	1147	1067	3723 2921		4081	3223				
	Street 1	I/County Road	d 17 - Actuated	-Uncoordinate	d Signal					
EB	695 ⁽¹⁾	1769 ⁽¹⁾	1882	4796	2112	5383				
WB	1223 ⁽¹⁾	1022(1)	3871	2927	4277	3266				
Notes: (1) Traffic that po	volumes at Stre	et 1/County Roa Road 17 given tl	ad 17 in the 2024 hat Street 1 is yet	horizon year repr	esent only the thr d.	ough traffic on				

	-				
Table 6: Projected	County Road 17	7 Background Pl	us Planned Deve	Ionments Traffic G	irowth
14510 01 1 10 0000	obuilty Roua II	Buonground i n			

As shown in Table 6, with no site-generated traffic from the SSA1, the background traffic on County Road 17 between Carmen Bergeron and future Street 1 is projected to grow by approximately 1000 to 3000 veh/h during the morning peak hour and approximately 2000 to 3000 veh/h during the afternoon peak hour from 2024 to 2045. Between 2045 and 2055, the background traffic is expected to grow by approximately 200 to 400 veh/h during the morning peak hour and approximately to 300 to 600 veh/h during the afternoon peak hour.

It should be noted that County Road 17 would experience a significant increase in traffic volumes by 2045 as a result of other area developments and general background growth. Beyond 2045, background traffic is expected to grow moderately.

Background 2024 Operational Analysis

Table 7 summarizes intersection operations for the 2024 horizon year with the addition of 2024 background traffic volumes only (**Error! Reference source not found.**). This future background s cenario assumes no intersection or network improvements for comparison purposes. Detailed Synchro output data for background conditions is provided in Appendix C.

		Storage		AM Pea	ak Hour		PM Peak Hour					
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)		
	Carmen Bergeron/County Road 17 - Actuated-Uncoordinated Signal											
EBT	1 T	-	0.65	17.0	В	139	1.88	420.4	F	#624.9		
EBR	1 R	80	0.07	3.0	А	6	0.38	8.8	А	41		
WBL	1 L	125	0.18	5.2	А	9	0.69	33.2	В	42		
WBT	1 T	-	0.92	24.5	Ш	#306.7	0.86	19.3	D	#272.2		
NBL	1 L	-	0.56	44.9	А	48	0.58	48.9	А	41		
NBR	1 R	-	0.17	12.1	А	10	0.52	11.6	А	18		
	Overall	0.80	22.0	C	-	1.69	212.1	F	-			
		Ca	rmen Be	rgeron/R	lichelieu	- Unsign	alized					
EBL	1 L	-	0.04	7.6	А	1	0.03	9.1	А	0		
EB	1 T/R	-	0.02	6.9	А	1	0.07	8.9	А	1		
WBL	1 L	-	0.00	7.3	А	0	0.03	8.9	А	2		
WBT	1 T/R	-	0.21	7.4	А	6	0.39	11.0	А	3		
NB	1 T/L & 1 T/R	-	0.03	7.0	A	1	0.11	8.3	A	1		
SB	1 T/L	-	0.16	8.2	А	5	0.73	21.8	С	5		
SBR	1 R	-	0.03	6.3	A	1	0.05	7.0	A	0		
	Overall		0.36	7.5	Α	-	0.54	15.7	Α	-		
			Poupa	art/Riche	lieu - Un	signalize	d					

Table 7: Study Area Intersection Operations - 2024 Background Conditions

		Storage		AM Pea	ak Hour		PM Peak Hour			
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
EBL	1 L	20	0.08	8.0	А	2	0.28	11.8	А	8
EB	1 T/R	-	0.05	6.8	А	2	0.40	12.1	А	14
WB	1 L/T/R	-	0.10	8.1	А	2	0.19	11.4	А	5
NB	1 L/T/R	-	0.19	8.6	А	5	0.52	15.3	А	22
SB	1 L/T/R	-	0.14	7.9	А	4	0.55	15.4	А	25
	Overall		0.32	8.1	Α	-	0.64	13.9	В	-
		Po	oupart/W	almart D	riveway	- Unsigna	alized			
EB	1 L/R	-	0.03	8.9	А	1	0.25	15.1	А	8
NB	1 T/L	-	0.02	1.4	А	1	0.06	2.0	А	2
SB	1 T/R	-	0.05	0.0	A	0	0.18	0.0	A	0
	Overall		0.26	1.7	Α	-	0.56	3.1	Α	-

As shown in Table 7, assuming no transportation network improvements for the 2024 horizon year, study area intersections are projected to continue operating with an overall LOS 'C' or better during the weekday morning and afternoon peak hours, with the exception of the Carmen Bergeron/County Road 17 intersection, which is projected to operate over capacity with an overall LOS 'F' during the afternoon peak hour.

With regard to 'critical' movements, they are projected to operate with an LOS 'D' or better during both peak hours with the exception of the eastbound through movement of the Carmen Bergeron/County Road 17 intersection, which is projected to operate over capacity with an LOS 'F' during the afternoon peak hour, similar to existing conditions.

In terms of 95th percentile queues, the existing storage capacity is not exceeded.

Background 2045 Operational Analysis

Table 8 summarizes intersection operations for the 2045 horizon year with the addition of 2045 County Road 17 background plus planned developments' traffic volumes only (**Error! Reference s ource not found.**). This future background scenario assumes that the previously planned transportation network improvements outlined in Table 4 are now in place. This includes the Poupart extension to County Road 17, which is designated as future Street 1. It should be noted that this analysis scenario does not include site-generated traffic coming out of Street 1 (i.e. the northbound approach of Street 1/County Road 17 intersection).

Refer to Appendix C for Detailed Synchro output data for background conditions.

		Storage		AM Pea	ak Hou	r	PM Peak Hour			
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
	Carmen	Bergeron/	County	/ Road 17	7 - Actı	uated-Un	coordin	ated Signa	al	
EBT	2 T	-	8.16	3228.9	F	#81.5	23.34	10052.1	F	#182.8
EBR	1 R	80	0.41	14.7	А	#5.2	0.90	39.3	D	#16.1
WBL	1 L	125	0.30	8.3	А	3	0.56	12.2	А	6
WBT	2 T	-	8.23	3267.5	F	#133.7	3.23	1017.7	F	#98.7
NBL	1 L	-	1.51	288.5	F	#21.0	1.35	240.2	F	#16.9
NBR	1 R	-	0.34	12.7	А	#4.4	0.68	22.6	В	#9.5
	Overall		8.01	3066.7	F	-	21.95	5932.5	F	-
	Carm	en Berger	on/Ric	helieu - A	Actuate	d-Uncoo	rdinate	d Signal		
EBL	1 L	-	0.06	6.4	А	3	0.05	10.4	А	3
EB	1 T/R	-	0.04	5.9	А	3	0.13	10.5	А	9
WBL	1 L	-	0.05	6.3	А	2	0.08	10.5	А	5
WB	1 T/R	-	0.34	3.9	А	7	0.44	6.1	А	14
NB	1 T/L & 1 T/R	-	0.03	4.7	А	2	0.07	3.6	А	4
SB	1 T/L	-	0.16	7.1	А	8	0.60	13.0	А	#58.3
SBR	1 R	-	0.03	3.3	А	2	0.04	2.5	А	3
	Overall		0.25	5.0	Α	-	0.38	9.3	Α	-
		Poupart/Ri	ichelie	u - Actua	ited-Un	coordina	ted Sig	nal		
EBL	1 L	20	0.11	7.2	А	5	0.31	10.7	А	16
EB	1 T/R	-	0.15	3.4	А	4	0.52	5.3	А	16
WB	1 L/T/R	-	0.13	5.9	А	5	0.19	7.8	А	10
NB	1 T/L & 1 T/R	-	0.23	5.8	А	10	0.46	8.7	А	17
SB	1 L/T/R	-	0.13	4.4	А	7	0.58	9.4	А	28
	Overall		0.17	5.3	Α	-	0.41	8.1	Α	-
		Poup	art/Wa	Imart Dri	veway	- Unsigna	alized			
EBL	1 L/R	-	0.03	9.1	А	1	0.28	17.4	А	8
NB	1 T & 1 T/L	-	0.14	0.0	А	0	0.17	0.0	А	0
SB	1 T & 1 T/R	-	0.05	0.0	А	0	0.19	0.0	А	0
	Overall		0.28	0.9	Α	-	0.45	2.3	Α	-
	Stre	eet 1/Coun	ty Roa	d 17 - Ac	tuated	-Uncoord	linated	Signal		
EBT	2 T	-	0.84	11.3	D	182	2.13	529.2	F	#1312.4
WBT	2 T	-	1.72	346.2	F	#998.3	1.30	157.3	F	#673.5
	Overall		1.43	236.8	F	-	1.82	388.2	F	-

Table 8: Study Area Intersection Operations - 2045 Background Conditions

As shown in Table 8, with the planned roadway changes and background 2045 traffic volumes, SSA1 intersections are projected to operate with an excellent overall LOS 'A' with the exception of the Carmen Bergeron/County Road 17 and Street 1/County Road 17 intersections which are projected to operate over capacity with an overall LOS 'F' during both peak hours. This is consistent with other studies and plans within the study area and is expected as a result of the significant traffic volumes on County Road 17 generated from the other area developments.

The critical movements which are operating over capacity with an LOS 'F' include:

Carmen Bergeron/County Road 17

- Eastbound through movement during both peak hours
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Street 1/County Road 17

- Eastbound through movement during the afternoon peak hour
- Westbound through movement during both peak hours

In terms of 95th percentile queues, the existing storage capacity is not exceeded.

Background 2055 Operational Analysis

Table 9 summarizes intersection operations for the 2055 horizon year with the addition of 2055 County Road 17 background plus planned developments' traffic volumes only. This future background scenario assumes that the previously planned transportation network improvements outlined in Table 4 are now in place. This includes the Poupart extension to County Road 17 which is designated as future Street 1. It should be noted that this analysis scenario does not include site-generated traffic coming out of Street 1 (i.e. the northbound approach of Street 1/County Road 17 intersection).

Refer to Appendix C for Detailed Synchro output data for background conditions.

Dir.	Lanes	Storage Length (m)		AM Pe	ak Hou	r	PM Peak Hour				
			v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)	
Carmen Bergeron/County Road 17 - Actuated-Uncoordinated Signal											
EBT	2 T	-	9.12	3659.9	F	#90.1	25.97	11238.4	F	#201.8	
EBR	1 R	80	0.41	14.7	А	#5.2	0.98	58.0	Е	#18.2	
WBL	1 L	125	0.30	8.3	А	3	0.56	12.2	А	6	
WBT	2 T	-	9.04	3630.4	F	#147.6	3.58	1175.6	F	#110.6	
NBL	1 L	-	1.51	288.5	F	#21.0	1.35	240.2	F	#16.9	
NBR	1 R	-	0.34	12.7	А	#4.4	0.68	22.6	В	#9.5	
	Overall		8.28	3447.8	F	-	24.56	6716.8	F	-	

Table 9: Study Area Intersection Operations - 2055 Background Conditions

City of Clarence-Rockland Rockland West Secondary Plan – Phase 2 Report

		Storage		AM Pe	ak Houi	•		PM Pea	k Hour	
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
	C	armen Bei	geron/F	Richelieu	- Actua	ted-Unco	ordinate	d Signal	-	
EBL	1 L	-	0.06	6.4	А	3	0.05	10.4	А	3
EB	1 T/R	-	0.04	5.9	А	3	0.13	10.5	А	9
WBL	1 L	-	0.05	6.3	А	2	0.08	10.5	А	5
WB	1 T/R	-	0.34	3.9	А	7	0.44	6.1	А	14
NB	1 T/L & 1 T/R	-	0.03	4.7	A	2	0.07	3.6	А	4
SB	1 T/L	-	0.16	7.1	А	8	0.60	13.0	А	#58.3
SBR	1 R	-	0.03	3.3	А	2	0.04	2.5	А	3
	Overall		0.25	5.0	Α	-	0.38	9.3	Α	-
		Poupa	rt/Riche	lieu - Act	tuated-l	Jncoordin	ated Sig	jnal		
EBL	1 L	20	0.11	7.2	А	5	0.31	10.6	А	16
EB	1 T/R	-	0.15	3.4	А	4	0.52	5.3	А	16
WB	1 L/T/R	-	0.13	5.9	А	5	0.19	7.8	А	10
NB	1 T/L & 1 T/R	-	0.23	5.8	A	10	0.46	8.7	А	17
SB	1 L/T/R	-	0.13	4.4	А	7	0.58	9.4	А	28
	Overall		0.17	5.3	Α	-	0.41	8.1	Α	-
		P	oupart/V	Valmart I	Drivewa	y - Unsigr	alized		-	
EB	1 L/R	-	0.03	9.1	А	1	0.28	17.4	А	8
NB	1 T & 1 T/L	-	0.14	0.0	А	0	0.17	0.0	А	0
SB	1 T & 1 T/R	-	0.05	0.0	А	0	0.19	0.0	А	0
	Overall		0.28	0.9	Α	-	0.45	2.3	Α	-
		Street 1/C	ounty R	oad 17 -	Actuate	ed-Uncoor	dinated	Signal		
EBT	2 T	-	0.94	19.3	Е	292	2.39	644.9	F	#1510.4
WBT	2 T	-	1.90	426.3	F	#1136.0	1.45	224.8	F	#789.7
	Overall		1.58	291.9	F	-	2.03	486.2	F	-

Similar to background 2045 conditions, Table 9 shows that with the planned roadway improvements and background 2055 traffic volumes. SSA1 intersections are projected to continue operating with an excellent overall LOS 'A' or better during the weekday morning and afternoon peak hours except for the Carmen Bergeron/County Road 17 and Street 1/County Road 17 intersections which are projected to operate over capacity with an overall LOS 'F' during both peak hours. This is due to the large traffic volumes on County Road 17 generated from the other area developments.

The critical movements which are operating over capacity with an LOS 'F' include:

Carmen Bergeron/County Road 17

- Eastbound through movement during both peak hours
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Street 1/County Road 17

- Eastbound through movement during the afternoon peak hour
- Westbound through movement during both peak hours

In terms of 95th percentile queues, the existing storage capacity is not exceeded.

3.6 Concept Option 1

Projected Site Trip Generation

To complete a projected trip generation for the business park and commercial uses, land use areas were converted to ground floor areas (GFA), assuming approximately 70% of the land would be developed. For the residential land uses, the density ratios outlined in Section 5.6 of the Official Plan of the Urban Area of the City of Clarence-Rockland were used to determine the maximum projected medium and high-density units for each option. These land use statistics are summarized in Table 10.

		Option 1		Option 3			
Land Use	Area (ha)	GFA (ft ²)	Units	Area (ha)	GFA (ft ²)	Units	
Business Park	16.3	307,043 ft ²	-	45.8	862,735 ft ²	-	
Service Commercial	14.3	335,449 ft ²	-	1.4	31,646 ft ²	-	
Commercial Core	15.9	323,243 ft ²	-	0	-	-	
Medium Density Residential	4.0	-	220	6.5	-	358	
High Density Residential	4.1	-	513	0	-	-	

Table 10: Statistics for Secondary Plan Concept Options 1 and 3

The projected site-generated traffic was then estimated using appropriate trip generation rates from the 10th Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. Based on the location and type of development envisioned, Table 11 summarizes the appropriate trip generation rates for estimating projected site-generated traffic for concept options 1 and 3.

Land Use	ITE Land Use Code	AM Peak Hour ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾	PM Peak Hour ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾
Business Park	ITE 770	$T_A = 1.35(X);$	$T_A = 1.22(X);$
		Ln(T _F)= 0.94 Ln(X) +	Ln(T _F)= 0.88 Ln(X) +
		0.59	0.93
Medium Density	ITE 215	$T_A = 0.48(U);$	$T_A = 0.57(U);$
Residential		$T_F = 0.52(X) - 5.70$	$T_F = 0.60(X) - 3.93$
High Density Residential	ITE 220	$T_A = 0.40(U);$	$T_A = 0.51(U);$
		$T_F = 0.31(X) + 22.85$	$T_F = 0.43(X) + 20.55$
High-turnover Sit-Down	ITE 932	$T_A = 9.57(X)$	$T_{A} = 6.00(X)$
Shopping Plaza	ITE 821	$T_A = 3.53(X)$	$T_A = 9.03(X);$

Land Use	ITE Land Use Code	AM Peak Hour ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾	PM Peak Hour ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾
			Ln(T _F)= 7.67 Ln(X) + 118.86
Pharmacy	ITE 880	$T_A = 2.94(X)$ $T_F = 10.22(X) - 75.70$	$T_A = 8.51(X)$
Liquor Store	ITE 899	$T_{A} = 0.59(X)$	$T_A = 16.62(X)$ $T_F = 0.50(X) + 151.78$
Fast-Food with Drive Thru	ITE 934	T _A = 44.61(X)	$T_A = 33.03(X)$
Coffee Shop with Drive- thru	ITE 937	T _A = 85.88(X)	T _A = 38.99(X)
Drive-In Bank	ITE 912	$T_{A} = 9.95(X)$	$T_A = 21.01(X)$
Variety Store	ITE 814	$T_{A} = 3.04(X)$	$T_A = 3.08(X)$
Clinic	ITE 630	$T_A = 2.75(X)$ $T_F = 2.19(X) + 8.68$	T _A = 3.69(X); T _F = 3.53(X) + 2.98
Strip Retail Plaza	ITE 822	$T_A = 1.59(X)$	$T_A = 2.25(X)$
Home Improvement Superstore	ITE 862	$T_A = 1.51(X)$	$T_A = 2.29(X)$
Supermarket	ITE 850	$T_A = 2.86(X)$	$T_A = 8.95(X);$ Ln(T _F)= 0.81 Ln(X) + 2.92
Notes: (1) T_A = Average Vehicle T (2) T_F = Vehicle Trips by Fir (3) X = 1,000 ft ² of Gross F (4) U = Per Unit	rips tted Curve loor Area (GFA)		·

With respect to ITE trip generation rates, the data used to develop these rates only included vehicle trips (i.e. walking, cycling and transit trips were not captured in this data). To consider the multi-modal trips generated by the proposed development, projected site-generated traffic (estimated using the ITE trip generation rates) were converted to projected site-generated person trips, which could then be subdivided into different transportation modes based on area travel patterns and available facilities/network connections (e.g., the availability of transit, walking and cycling facilities). To convert projected ITE vehicle trips to person trips, an auto occupancy factor and non-auto trip factor was applied to the ITE trip generation rates. Based on available American Census data, the typical modal share of non-auto person trips was approximately 10% and the typical auto occupancy was 1.15. Therefore, when combined, a factor of 1.28 was used to convert vehicle trips to person trips to person trips. To account for multi-purpose trips for mixed-use developments, a percent reduction was applied to the total projected site-generated trips.

Based on the foregoing, the projected weekday morning and afternoon peak hour person trip generation for concept option 1 is summarized in Table 12.

Land Use	Area	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)			
		In	Out	Total	In	Out	Total	
Business Park	305,000 ft ²	299	53	352	91	260	351	

Table 12: Option 1 Modified Peak Period Person Trips

Land Use	Area	AM Peak Hour Area (Person Trips/h)				PM Peak Hour (Person Trips/h)			
		In	Out	Total	In	Out	Total		
Service Commercial & Commercial Core	660,000 ft ²	3,354	2,837	6,191	2,809	2,849	5,658		
Medium Density Residential	220	10	32	42	29	21	50		
High Density Residential	513	11	36	47	31	18	49		
Total I	Person Trips	5,247	4,223	9,470	4,232	4,498	8,730		
30% Multi-F	Purpose Trip Reduction	-1,574	-1,267	-2,841	-1,270	-1,349	-2,619		
Total 'New' I	Person Trips	3,673	2,956	6,629	2,962	3,149	6,111		

Directional splits (i.e., inbound vs outbound trips) were obtained from the ITE Trip Generation Manual. Given the proposed development was considered mixed-use, a 'multi-purpose' trip reduction of 30% was assumed to account for the internal trips between residential and commercial land uses. This trip reduction rate was consistent with the Expansion Lands Secondary Plan Transportation Impact Assessment report completed in June 2019 by CIMA+ for the City of Clarence-Rockland for the southern expansion lands.

Travel Mode Shares

To determine the number of person trips arriving/departing by each travel mode, total projected person trips were subdivided by percent mode shares. With respect to the TRANS Trip Generation Manual Summary Report, mode shares were developed for select land uses, specific to the City. These were referenced from the 2019 Expansion Lands Secondary Plan prepared by CIMA+ and the 2018 Transportation Impact Study Draft Plan of Subdivision prepared by Castleglenn Consultants to remain consistent with previous analyses completed for the City. As such, the following modal splits were assumed:

Auto Driver	80%
Auto Passenger	5%
Transit	10%
Non-motorized	5%
Total Person Trips	100%

The following Table 13, Table 14, Table 15, and Table 16 summarize the appropriate mode share values as used for the analysis based on the proposed land uses. Table 17 summarizes the total modal share values for option 1.

•	-			•			
Travel Mode	Mode Share	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)		
		In	Out	Total	In	Out	Total

80%

5%

Table 13: Option 1 Projected Modal Site Generated Trips – Business Park

Auto Driver

Auto Passenger

281

18

240

15

43

3

283

18

73

5

208

13

Travel Mode	Mode Share	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)		
		In	Out	Total	In	Out	Total
Transit	10%	30	5	35	9	26	35
Non-motorized	5%	14	2	16	4	13	17
Total Person Trips	100%	299	53	352	91	260	351
Total 'New	' Vehicle Trips	240	43	283	73	208	281

As summarized in Table 13, the business park land use was projected to generate approximately 283 and 281 veh/h during weekday morning and afternoon peak hours, respectively.

Table 14: Option 1 Projected Modal Site Generated Trips – Service Commercial & Commercial Core

Travel Mode	Mode Share	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)		
		In	Out	Total	In	Out	Total
Auto Driver	80%	2,689	2,274	4,963	2,253	2,285	4,538
Auto Passenger	5%	169	146	315	144	146	290
Transit	10%	332	282	614	277	281	558
Non-motorized	5%	164	135	299	135	137	272
Total Person Trips	100%	3,354	2,837	6,191	2,809	2,849	5,658
Total 'New' Vehicle Trips		2,689	2,274	4,963	2,253	2,285	4,538

As summarized in Table 14, the service commercial and commercial core land uses were projected to generate approximately 4,963 and 4,538 veh/h during weekday morning and afternoon peak hours, respectively.

Table 15: Option 1	Projected Modal	Site Generated Trips –	Medium Density Residential
			······································

Travel Mode	Mode Share	AM (Per	Peak H son Trij	lour PM Peak Hou ps/h) (Person Trips/			our os/h)
		In	Out	Total	In	Out	Total
Auto Driver	80%	20	60	80	54	39	93
Auto Passenger	5%	1	4	5	4	3	7
Transit	10%	2	7	9	6	4	10
Non-motorized	5%	1	3	4	3	2	5
Total Person Trips	100%	24	74	98	67	48	115
Total 'New'	Vehicle Trips	20	60	80	54	39	93

As summarized in Table 15, the medium density residential land use was projected to generate approximately 283 and 281 veh/h during weekday morning and afternoon peak hours, respectively.

Travel Mode	Mode Share	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)		
		In	Out	Total	In	Out	Total
Auto Driver	80%	47	148	195	126	75	201
Auto Passenger	5%	3	9	12	8	5	13
Transit	10%	6	18	24	16	9	25
Non-motorized	5%	2	9	11	7	4	11
Total Person Trips	100%	58	184	242	157	93	250
Total 'New'	Vehicle Trips	47	148	195	126	75	201

Table 16: Option 1 Projected Modal Site Generated Trips – High Density Residential

As summarized in Table 16, the high-density residential land use was projected to generate approximately 283 and 281 veh/h during weekday morning and afternoon peak hours, respectively.

Travel Mode	Mode Share	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)		
		In	Out	Total	In	Out	Total
Auto Driver	80%	2,946	2,372	5,318	2,375	2,525	4,900
Auto Passenger	5%	186	153	339	153	161	314
Transit	10%	364	294	658	291	311	602
Non-motorized	5%	178	139	317	141	151	292
Total Person Trips	100%	3,674	2,958	6,632	2,960	3,148	6,108
Total 'New'	Vehicle Trips	2,946	2,372	5,318	2,375	2,525	4,900

Table 17: Option 1 Projected Modal Site Generated Trips

As summarized in Table 17, concept option 1 was projected to generate approximate two-way vehicle volumes of 5,318 veh/h and 4,900 veh/h during weekday morning and afternoon peak hours, respectively. With regard to active modes, option 1 was projected to generate approximate two-way person trips of 317 trips/h and 292 trips/h, during weekday morning and afternoon peak hours, respectively, and site-generated transit trips were projected to be in the order of 658 trips/h and 602 trips/h, during weekday morning and afternoon peak hours, respectively.

It should be noted that the above trip generation assumed a high degree of density within SSA1. The number of trips outlined in Table 17 were a conservative estimate of the total potential trip

generation that may be experienced with the option 1 land-use statistics as summarized in Table 2.

Trip Distribution

The projected distribution of site-generated traffic was derived based on existing travel patterns, the site's connections to/from the surrounding road network, our local area knowledge (e.g., the location and proximity of employment, other area shopping, communities, recreational opportunities, etc.). For analysis purposes and to be consistent with the 2019 Secondary Plan and 2018 TIS, the following approximate distribution of projected site-generated traffic was assumed:

65%	to/from the west (Ottawa) via County Road 17;
15%	to/from the south via Baseline Road;
10%	to/from the east (Hawkesbury) via County Road 17; and
10%	to/from the City of Clarence Rockland via Laurier Street.
100%	

Trip Assignment

Based on the above assumed distribution, projected 'new' Secondary Plan site-generated traffic was assigned to the study area network and is depicted in the following Figure 14.

The following Figure 15 depicts total projected volumes for the build-out year of 2045, which were derived by superimposing 'new' Secondary Plan site-generated traffic volumes onto 2045 projected County Road 17 background plus developments traffic volumes (i.e. summing together volumes depicted in **Error! Reference source not found.**, and Figure 14, resulting in **Error! Reference source not found.**).

Figure 15: 2045 Total Projected Traffic Volumes – Option 1

Ten years beyond full build-out, the following Figure 16 depicts total projected volumes for the horizon year of 2055, which were derived by superimposing 'new' Secondary Plan site-generated traffic volumes onto 2055 projected County Road 17 background plus planned developments traffic volumes (i.e. summing together volumes depicted in Figure 14, and Figure 13, resulting in Figure 16).

Figure 16: 2055 Total Projected Traffic Volumes - Option 1

Roundabout Feasibility Screening of New Intersections

Based on discussions with the City, roundabouts were the preferred design option for the following new internal intersections within SSA1:

- Street 1/Street 2
- Street 1/Street 3
- Street 3/Street 4
- Street 3/Poupart

The following guideline and tools were used to determine roundabout feasibility: TAC Canadian Roundabout Design Guide (2017), City of Ottawa Roundabout Initial Feasibility Screening Tool (2013), and the Waterloo Roundabout Traffic Flow Sheet (2009).

Based on the results of the Screening Tool and TAC Roundabout Design Guide, roundabouts were found to be feasible for the internal intersections identified within the Secondary Plan. As intersection control was warranted, there were no geometric constraints, and the land was generally flat, roundabouts would be an appropriate intersection control measure. The completed screening forms are included as Appendix D.

3.7 Roundabout Conceptual Design

Using the Roundabout Traffic Flow Sheet and to be consistent with the proposed roundabout designs presented in the St-Jean Street/Montee Poupart Environmental Assessment Report (March 2024), the following Table 18 shows the elements included in the conceptual design of the proposed roundabout configuration for the future intersections.

Street 1/Street 2	Street 1/Street 3	Street 3/Street 4	Street 3/Poupart
Double circulating lane, 10.0 m width	Double circulating lane, 10.0 m width	Double circulating lane, 10.0 m width	Double circulating lane, 10.0 m width
Island diameter of 40.0 m	Island diameter of 40.0 m	Island diameter of 40.0 m	Island diameter of 40.0 m
Double entry and exit lanes for all approaches	Double entry and exit lanes for all approaches	Double entry and exit lanes for the east-west approaches, single entry and exit lane for the north approach	Double entry and exit lanes for the east-west approaches, single entry and exit lane for the north approach
Entry radius of 20.0 m	Entry radius of 20.0 m	Entry radius of 20.0 m	Entry radius of 20.0 m

Table 18: Roundabout Design Parameters

The completed flow sheets can be found in Appendix E and the conceptual designs for each intersection are included in Appendix F.

3.8 Roundabout Operational Analysis

Using the intersection capacity analysis software SIDRA Intersection (v9.1), SSA1 intersections were assessed in terms of volume-to-capacity ratio (V/C ratio), 95th percentile queues (meters), a vehicle delay (seconds), and a corresponding Level of Service (LOS). Based on the conceptual geometry and total projected volumes (Figure 15), the following Table 19 summarizes the output results from SIDRA. Detailed SIDRA output data for concept option 1 can be found in Appendix G.

Additionally, the following parameters were assumed for the roundabout operational analysis:

- Environmental factor: 1.1
- Pedestrian crossings on all legs
- 25 ped/hr crossing each leg, morning and afternoon peak periods
- PHF 0.90 similar to the 2019 Secondary Plan report
- Assumed speed limit 50 km/h for new roadways

	AM Peak (PM Peak)									
Intersection		Critical	Intersection							
	LOS	LOS avg. delay (s) Movement Queue (m)			Delay (s)	LOS				
Street 1 / Street 2	F(D)	97.6(43.0)	NBL(WBR)	517.0(89.6)	50.8(26.1)	E(C)				
Street 1 / Street 3	A(B)	9.1(13.5)	EBL(EBL)	0.9(3.8)	4.1(5.6)	A(A)				
Street 3 / Street 4	C(B)	20.9(11.3)	SBL(SBL)	35.7(12.2)	5.7(2.7)	A(A)				

Table 19: Option 1 SIDRA Roundabout Analysis Results

	Street 3 / Poupart	C(B)	28.0(18.4)	SBL(SBL)	43.4(39.6)	4.3(4.7)	A(A)
--	--------------------	------	------------	----------	------------	----------	------

With the proposed geometry the study area intersections were projected to operate 'as a whole' with a LOS 'A' during morning and afternoon peak hours. The exception was the Street 1/Street 2 intersection which was projected to operate at an LOS 'E' during the morning peak hour and LOS 'C' during the afternoon peak hour. Critical movements were projected to operate with a LOS 'C' or better during both peak hours. However, the critical northbound left-turn movement at the Street 1/Street 2 intersection is projected to operate at an LOS 'F' during both the morning peak hour.

As for 95th percentile queues, the projected queues of the critical movements were not considered critical with the exception northbound left-turn movement at the Street 1/Street 2 intersection. These were projected to be 517 m during the morning peak hours (approximately equal to 70 vehicles).

3.9 Assessment of Existing Traffic System with Total Projected Volumes for Concept Option 1

Total 2045 Conditions – Option 1

Similar to existing and future background conditions, total projected conditions were assessed using the intersection capacity analysis software Synchro (v11). Metrics such as LOS, V/C ratio, 95th percentile queues (metres) and vehicular delay (seconds) were analyzed. With the planned network changes outlined in Table 4, the following Table 20 summarizes the intersection operational analysis of the study area intersections for the total projected 2045 horizon year.

Detailed Synchro output data for 2045 future total projected conditions is provided in Appendix H.

		Storage		AM Pea	ak Hour			PM Pea	ak Hour	
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
Carmen Bergeron/County Road 17 - Actuated-							Incoordi	nated Sig	nal	
EBT	2 T	-	11.19	4612.1	F	#86.2	29.18	12694.0	F	#187.6
EBR	1 R	80	0.87	27.6	D	#15.0	1.08	68.3	F	#25.8
WBL	1 L	125	0.65	13.6	В	#7.8	0.74	19.9	С	#13.8
WBT	2 T	-	3.58	1175.6	F	#139.4	2.27	589.5	F	#103.3
NBL	1 L	-	5.90	2243.5	F	#52.8	5.40	2014.1	F	#44.8
NBR	1 R	-	0.74	24.9	С	#10.3	0.85	28.6	D	#13.3
	Overall		9.29	2064.1	F	-	25.66	6619.8	F	-
		Carmen B	ergeron	/Richelie	u - Actu	ated-Unco	oordinat	ed Signal		
EBL	1 L	-	1.22	137.8	F	#94.2	1.58	299.9	F	#92.7
EB	1 T/R	-	0.21	7.1	А	17	0.28	10.4	А	21
WBL	1 L	-	0.04	6.5	A	4	0.06	8.9	А	5

Table 20: 2045 Total Projected Operations – Option 1

		Storage		AM Pea	ak Hour			PM Pea	ak Hour	
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
WB	1 T/R	-	0.47	7.1	А	30	0.57	10.3	А	35
NB	1 T/L & 1 T/R	-	0.05	6.9	А	3	0.10	5.7	А	5
SB	1 T/L	-	0.29	11.8	А	14	0.91	39.6	Е	#76.8
SBR	1 R	-	0.62	5.2	В	13	0.55	3.8	Α	12
	Overall		0.79	43.9	С	-	0.95 73.4		Е	-
Poupart/Richelieu - Actuated-Uncoordinated Signal										
EBL	1 L	20	0.42	12.4	А	21	0.61	17.7	В	31
EB	1 T/R	-	0.19	3.9	А	7	0.54	5.4	Α	16
WB	1 L/T/R	-	0.13	7.2	А	8	0.19	8.6	Α	10
NB	1 T/L & 1 T/R	-	0.43	8.7	А	23	0.67	14.1	В	#33.3
SB	1 L/T/R	-	0.49	8.2	А	36	0.86	24.5	D	#89.8
	Overall		0.34	8.6	Α	-	0.60 15.9		В	-
			Poupart	/Walmart	Drivew	ay - Unsig	gnalized			
EB	1 L/R	-	0.03	10.0	А	1	0.38	24.6	Α	13
NB	1 T & 1 T/L	-	0.20	0.0	А	0	0.24	0.0	А	0
SB	1 T & 1 T/R	-	0.12	0.0	А	0	0.26	0.0	А	0
	Overall		0.38	0.6	Α	-	0.54	2.4	Α	-
		Street 1	/County	Road 17	- Actua	ted-Uncoc	ordinated	d Signal		
EBT	2 T	-	0.97	24.6	E	#415.6	2.28	592.5	F	#1421.0
EBR	1 R	-	1.77	366.4	F	#1038.3	2.53	705.4	F	#1558.8
WBL	1 L	-	3.77	1312.5	F	#120.5	3.10	1016.9	F	#97.4
WBT	2 T	-	1.87	412.8	F	#1112.9	1.43	214.6	F	#772.1
NBL	1 L	-	16.59	7028.7	F	#1840.7	14.24	5971.2	F	#1588.2
NBR	1 R	-	0.74	82.0	С	#64.6	0.85	103.3	D	#78.1
	Overall		9.44	1901.2	F	-	5.97	1438.0	F	-

As shown in Table 20, with the planned network improvements and total projected 2045 traffic volumes, SSA1 intersections are projected to operate with an overall LOS 'E' or better with the exception of the Carmen Bergeron/County Road 17 and Street 1/County Road 17 intersections which are projected to operate over capacity with an overall LOS 'F' during both peak hours.

The critical movements which are operating over capacity with an LOS 'F' include:

Carmen Bergeron/County Road 17

• Eastbound through movement during both peak hours

- Eastbound right-turn movement during the afternoon peak hour
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Carmen Bergeron/Richelieu

• Eastbound left-turn movement during both peak hours

Street 1/County Road 17

- Eastbound through movement during the afternoon peak hour
- Eastbound right-turn movement during both peak hours
- Westbound left-turn movement during both peak hours
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Under peak period conditions, the existing storage capacity generally accommodates 95th percentile queues adequately except for the eastbound left-turn movement at the Poupart/Richelieu intersection, where the existing storage capacity is exceeded by 11 m, equivalent to the length of only one vehicle (not considered critical).

Total 2055 Conditions – Option 1

The following Table 21 summarizes the intersection operational analysis of the study area intersections for the total projected 2055 conditions. Detailed Synchro output data for 2045 future total projected conditions is provided in Appendix H.

		Storage		AM Pea	k Hour			PM Peak	Hour	
Dir.	Lanes	s Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
Carmen E			rgeron/	County Ro	ad 17 -	Actuated-	Uncoord	inated Signa	al	
EBT 2 T - 12.43 5170.3 F #94.7 3		32.39	14138.3	F	#206.5					
EBR	1 R	80	0.87	27.6	D	#15.0	1.18	109.8	F	#29.8
WBL	1 L	125	0.65	13.6	В	#7.8	0.74	19.9	С	#13.8
WBT	2 T	-	3.92	1326.6	F	#153.3	2.51	696.0	F	#115.2
NBL	1 L	-	5.90	2243.5	F	#52.8	5.40	2014.1	F	#44.8
NBR	1 R	-	0.74	24.9	С	#10.3	0.85	28.6	D	#13.3
	Overal	I	10.35	2333.2	F	-	28.77	7512.0	F	-
		Carmen	Berger	on/Richelie	eu - Act	tuated-Un	coordina	ted Signal		
EBL	1 L	-	1.22	137.8	F	#94.2	1.58	299.9	F	#92.7
EB	1 T/R	-	0.21	7.1	А	17	0.28	10.4	А	21
WBL	1 L	-	0.04	6.5	A	4	0.06	8.9	A	5
WB	1 T/R	-	0.47	7.1	А	30	0.57	10.3	А	35

Table 21: 2055 Total Projected Operations – Option 1

City of Clarence-Rockland Rockland West Secondary Plan – Phase 2 Report

		Storage		AM Pea	k Hour			PM Peak	Hour	
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
NB	1 T/L & 1 T/R	-	0.05	6.9	А	3	0.10	5.7	А	5
SB	1 T/L	-	0.29	11.8	А	14	0.91	39.6	Е	#76.8
SBR	1 R	-	0.62	5.2	В	13	0.55	3.8	Α	12
	Overal		0.79	43.9	С	-	0.95	73.4	Е	-
Poupart/Richelieu - Actuated-Uncoordinated Signal										
EBL	1 L	20	0.42	12.4	А	21	0.61	17.7	В	31
EB	1 T/R	-	0.19	3.9	А	7	0.54	5.4	А	16
WB	1 L/T/R	-	0.13	7.2	А	8	0.19	8.6	А	10
NB	1 T/L & 1 T/R	-	0.43	8.7	А	23	0.67	14.1	В	#33.3
SB	1 L/T/R	-	0.49	8.2	А	36	0.86	24.5	D	#89.8
	Overal	l	0.34	8.6	Α	-	0.60	0.60 15.9 I		-
			Poupa	art/Walmar	t Drive	way - Unsi	ignalized			
EB	1 L/R	-	0.03	10.0	А	1	0.38	24.6	А	13
NB	1 T & 1 T/L	-	0.20	0.0	А	0	0.24	0.0	А	0
SB	1 T & 1 T/R	-	0.12	0.0	А	0	0.26	0.0	А	0
	Overal	I	0.38	0.6	Α	-	0.54	2.4	Α	-
		Street	1/Coun	ty Road 17	- Actu	ated-Unco	ordinate	d Signal		
EBT	2 T	-	1.07	56.4	F	#495.4	2.54	708.3	F	#1618.6
EBR	1 R	-	1.80	377.8	F	#1049.5	2.55	715.7	F	#1565.7
WBL	1 L	-	3.86	1353.6	F	#121.5	3.10	1016.9	F	#97.4
WBT	2 T	-	2.05	493.1	F	#1251.0	1.58	281.9	F	#887.7
NBL	1 L	-	16.59	7028.7	F	#1840.7	14.24	5971.2	F	#1588.2
NBR	1 R	-	0.75	83.0	С	#65.2	0.85	103.3	D	#78.1
	Overal		9.12	1855.2	F	-	5.88	1439.5	F	-

Similar to the 2045 total projected conditions, Table 21 shows that with the planned network improvements and total projected 2055 traffic volumes, study area intersections are projected to continue operating with an overall LOS 'E' or better with the exception of the Carmen Bergeron/County Road 17 and Street 1/County Road 17 intersections which are projected to operate over capacity with an overall LOS 'F' during both peak hours.

The critical movements which are operating over capacity with an LOS 'F' include:

Carmen Bergeron/County Road 17

- Eastbound through movement during both peak hours
- Eastbound right-turn movement during the afternoon peak hour

- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Carmen Bergeron/Richelieu

• Eastbound left-turn movement during both peak hours

Street 1/County Road 17

- Eastbound through movement during the afternoon peak hour
- Eastbound right-turn movement during both peak hours
- Westbound left-turn movement during both peak hours
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Under peak period conditions, the existing storage capacity generally accommodates 95th percentile queues adequately except for the eastbound left-turn movement at the Poupart/Richelieu intersection, where the existing storage capacity is exceeded by 11 m, equivalent to the length of only one vehicle (not considered critical).

3.10 Concept Option 3

3.10.1 Transportation

The projected site-trip generated traffic was derived using the same trip generation rates outlined in Table 11. The projected weekday morning and afternoon peak hour person trip generation for concept option 3 were summarized in Table 22.

Land Use	Area	AM (Per	Peak H son Trip	our os/h)	PM Peak Hour (Person Trips/h)			
		In	Out	Total	In	Out	Total	
Business Park	863,000 ft ²	790	140	930	226	645	871	
Service Commercial	32,000 ft ²	189	157	346	136	153	289	
Medium Density Residential	358 units	40	122	162	111	78	189	
Total Pe	1,456	598	2,054	676	1,250	1,926		
30% Multi-Purpose Trip	-437	-179	-616	-203	-375	-578		
Total 'New' Per	rson Trips	1,019	419	1,438	473	875	1,348	

Table 22: Option 3 Modified Peak Period Person Trips

Concept option 3 was projected to generate an approximate two-way total of 1,438 and 1,348 person trips/h during weekday morning and afternoon peak hours, respectively. These trips were then broken down by the same modal splits previously identified. The following Table 23, Table 24, and Table 25 summarize the appropriate mode share values that were used for analysis purposes, based on the proposed land uses. Table 26 summarizes the total modal share values for option 3.

Travel Mode	Mode Share	AM (Per	Peak H son Trij	lour os/h)	PM Peak Hour (Person Trips/h)			
		In	Out	Total	In	Out	Total	
Auto Driver	80%	632	112	744	181	516	697	
Auto Passenger	5%	40	7	47	12	33	45	
Transit	10%	79	14	93	22	64	86	
Non-motorized	5%	39	7	46	11	32	43	
Total Person Trips	100%	790	140	930	226	645	871	
Total 'New'	632	112	744	181	516	697		

Table 23: Option 3 Projected Modal Site Generated Trips – Business Park

The business park land use was projected to generate approximately 744 and 697 veh/h during weekday morning and afternoon peak hours, respectively.

Table 24: Option 3 Projected Modal Site Generated Trips – Service Commercial

Travel Mode	Mode Share	AM (Per	Peak H son Trij	lour os/h)	PM Peak Hour (Person Trips/h)			
		In	Out	Total	In	Out	Total	
Auto Driver	80%	153	127	280	111	123	234	
Auto Passenger	5%	10	9	19	7	9	16	
Transit	10%	18	14	32	13	14	27	
Non-motorized	5%	8	7	15	5	7	12	
Total Person Trips	100%	189	157	346	136	153	289	
Total 'New'	153	127	280	111	123	234		

The service commercial and commercial core land uses were projected to generate approximately 280 and 234 veh/h during weekday morning and afternoon peak hours, respectively.

Travel Mode	Mode Share	AM (Per	Peak H son Trij	lour os/h)	PM Peak Hour (Person Trips/h)			
		In	Out	Total	In	Out	Total	
Auto Driver	80%	32	98	130	89	63	152	
Auto Passenger	5%	2	6	8	6	4	10	
Transit	10%	4	12	16	11	8	19	
Non-motorized	5%	2	6	8	5	3	8	
Total Person Trips	100%	40	122	162	111	78	189	
Total 'New'	Vehicle Trips	32	98	130	89	63	152	

The medium density residential land use was projected to generate approximately 130 and 152 veh/h during weekday morning and afternoon peak hours, respectively.

Travel Mode	Mode Share	AM (Per	Peak H son Trij	lour os/h)	PM Peak Hour (Person Trips/h)			
		In	Out	Total	In	Out	Total	
Auto Driver	80%	817	337	1,154	381	702	1,083	
Auto Passenger	5%	52	22	74	25	46	71	
Transit	10%	101	40	141	46	86	132	
Non-motorized	5%	49	20	69	21	42	63	
Total Person Trips	100%	1,019	419	1,438	473	876	1,349	
Total 'New'	Vehicle Trips	817	337	1,154	381	702	1,083	

Table 26: Option 3 Projected Modal Site Generated Trips

Option 3 was projected to generate approximate two-way vehicle volumes of 1,154 veh/h and 1,083 veh/h during weekday morning and afternoon peak hours, respectively. With regard to active modes, option 3 was projected to generate approximate two-way person trips of 69 trips/h and 63 trips/h, during weekday morning and afternoon peak hours, respectively, and site-generated transit trips were projected to be in the order of 141 trips/h and 132 trips/h, during weekday morning and afternoon peak hours, respectively.

Trip Distribution and Assignment

Using the same assumed distribution and assignment approach as option 1, the projected 'new' Secondary Plan site-generated traffic for option 3 was assigned to the SSA1 network and is depicted in the following Figure 17.

Figure 17: Option 3 'New' Secondary Plan Site-Generated Traffic

The following Figure 18 depicts total projected volumes for the horizon year of 2045, which were derived by superimposing new site-generated traffic volumes onto projected background traffic volumes (i.e. summing together volumes depicted in Figure 12 and Figure 17 resulting in Figure 18).

Figure 18: 2045 Total Projected Traffic Volumes – Option 3

Ten years beyond full build-out, the following Figure 19 depicts total projected volumes for the horizon year of 2055, which were derived by superimposing new site-generated traffic volumes onto 2055 projected background traffic volumes (i.e. summing together volumes depicted in Figure 13 and Figure 17 resulting in Figure 19).

Figure 19: 2055 Total Projected Traffic Volumes – Option 3

Roundabout Feasibility Screening of New Intersections

Based on the results of the Screening Tool and TAC Roundabout Design Guide, roundabouts were found to be feasible for the internal intersections identified within SSA1. As intersection control was warranted, there are no geometric constraints, and the land is generally flat roundabouts would be an appropriate intersection control measure. See the completed screening forms in Appendix D.

3.11 Roundabout Conceptual Design

Using the Roundabout Traffic Flow Sheet and to be consistent with the proposed roundabout designs presented in the St-Jean Street/Montee Poupart Environmental Assessment report (March 2024), the conceptual design of the proposed roundabout configuration included the roundabout design elements as outlined in Table 18.

The completed flow sheets can be found in Appendix E and the conceptual designs for each intersection are included in Appendix F.

3.12 Roundabout Operational Analysis

Using the intersection capacity analysis software SIDRA Intersection (v9.1), SSA1 intersections were assessed in terms of volume-to-capacity ratio (V/C ratio), 95th percentile queues (meters), a vehicle delay (seconds), and a corresponding Level of Service (LOS). With the conceptual

geometry and total projected volumes shown in Figure 18, Table 27 summarizes the output results from SIDRA. Detailed SIDRA output data for option 3 can be found in Appendix G.

The following parameters were assumed for the operational analysis:

- Environmental factor: 1.1
- Pedestrian crossings on all legs
- 25 ped/hr crossing each leg, morning and afternoon peak periods
- PHF 0.90 similar to the 2019 Secondary Plan report
- Assumed speed limit 50 km/h for new roadways

Table 27: Option 3 SIDRA Roundabout Analysis Results

	AM Peak (PM Peak)								
Intersection		Critica	Movement		Inters	Intersection			
	LOS	avg. delay (s)	Movement	Queue (m)	Delay (s)	LOS			
Street 1 / Street 2	B(B)	11.5(12.1)	WBL(EBL)	2.1(2.1)	2.4(2.1)	A(A)			
Street 1 / Street 3	A(B)	8.5(11.7)	EBL(EBL)	0.7(1.2)	3.8(5.4)	A(A)			
Street 3 / Street 4	B(A)	11.7(9.8)	SBL(SBL)	4.3(2.5)	1.8(1.5)	A(A)			
Street 3 / Poupart	B(B)	12.5(11.4)	SBL(SBL)	6.9(12.5)	2.1(2.8)	A(A)			

As with the proposed conceptual geometry, SSA1 intersections are projected to operate 'as a whole' with a LOS 'A' and with critical movements projected to operate with a LOS 'B' or better per Table 27. With regard to 95th percentile queues, the projected queues of the critical movements were not considered critical, and no additional storage was required.

3.13 Assessment of Existing Traffic System with Total Projected Volumes for Concept Option 3

Total 2045 Conditions – Option 3

Similar to existing and future background conditions, total projected conditions were assessed using the intersection capacity analysis software Synchro (v11) and SIDRA for the roundabouts. Metrics such as LOS, V/C ratio, 95th percentile queues (metres) and vehicular delay (seconds) were analyzed. Assuming no intersection improvements, the following Table 28 summarizes the intersection operational analysis of the study area intersections for the total projected 2045 horizon year.

Detailed Synchro output data for 2045 future total projected conditions is provided in Appendix H.

		Storage		AM Pea	ak Hou	r		PM Pea	ak Hour	
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
	Carn	nen Berge	ron/Cou	Inty Road	l 17 - A	ctuated-U	ncoordi	nated Sigr	nal	_
EBT	2 T	-	8.83	3541.8	F	#81.7	25.69	11148.4	F	#183.8
EBR	1 R	80	0.80	23.9	С	#13.0	1.01	52.4	F	#21.3
WBL	1 L	125	0.51	12.6	А	4	0.55	10.7	А	7
WBT	2 T	-	5.67	2115.6	F	#135.0	2.61	741.4	F	#99.0
NBL	1 L	-	2.65	781.8	F	#31.3	2.83	873.4	F	#28.7
NBR	1 R	-	0.48	17.4	А	#6.0	0.76	25.4	С	#10.9
	Overall		7.61	2308.3	F	-	23.55	6193.2	F	-
	C	armen Be	rgeron/l	Richelieu	- Actu	ated-Unco	ordinate	ed Signal	1	-
EBL	1 L	-	0.42	10.6	Α	13	0.55	17.7	Α	24
EB	1 T/R	-	0.10	6.0	Α	5	0.19	9.6	Α	13
WBL	1 L	-	0.05	5.9	Α	3	0.06	8.9	A	5
WB	1 T/R	-	0.42	4.9	A	11	0.44	5.6	A	16
NB	1 T/L & 1 T/R	-	0.04	5.8	А	2	0.09	5.5	A	5
SB	1 T/L	-	0.22	8.8	А	12	0.82	27.8	D	#73.4
SBR	1 R	-	0.31	3.1	А	8	0.22	2.8	А	7
	Overall		0.38	6.1	Α	-	0.48	14.6	Α	-
	1	Poupa	rt/Riche	lieu - Act	tuated-	Uncoordir	nated Sig	gnal	1	
EBL	1 L	20	0.17	7.6	Α	7	0.40	11.9	A	20
EB	1 T/R	-	0.17	3.3	Α	5	0.52	5.1	A	16
WB	1 L/T/R	-	0.13	5.9	A	6	0.18	7.8	A	10
NB	1 T/L & 1 T/R	-	0.26	5.9	А	11	0.52	10.1	A	22
SB	1 L/T/R	-	0.21	4.0	А	9	0.63	11.0	В	36
	Overall		0.19	5.3	Α	-	0.43	9.2	Α	-
	1	P	oupart/\	Nalmart I	Drivewa	ay - Unsig	nalized		T	-
EB	1 L/R	-	0.03	9.3	A	1	0.30	18.7	A	9
NB	1 T & 1 T/L	-	0.14	0.0	А	0	0.18	0.0	А	0
SB	1 T & 1 T/R	-	0.07	0.0	А	0	0.20	0.0	Α	0
	Overall		0.30	0.9	Α	-	0.46	2.4	Α	-
		Street 1/C	ounty R	Road 17 -	Actuat	ed-Uncoo	rdinated	Signal		
EBT	2 T	-	0.93	18.7	Е	285	2.21	563.4	F	#1371.1

Table 28: 2045 Total Projected Operations – Option 3

		Storage Length (m)	AM Peak Hour			PM Peak Hour				
Dir.	Lanes		v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
Carmen Bergeron/County Road 17 - Actuated-Uncoordinated Signal										
EBR	1 R	-	0.78	8.1	С	93	0.15	2.3	А	11
WBL	1 L	-	0.65	61.5	В	#12.8	0.24	17.2	А	4
WBT	2 T	-	1.77	366.6	F	#1033.5	1.35	180.3	F	#712.9
NBL	1 L	-	9.34	3770.8	F	#1057.5	2.09	538.0	F	#238.4
NBR	1 R	-	0.04	55.3	A	6	0.18	62.5	A	18
	Overall		3.05	854.8	F	-	2.20	413.8	F	-

As shown in Table 28, with the planned network improvements and total projected 2045 traffic volumes, SSA1 intersections are projected to operate with an excellent overall LOS 'A' or better with the exception of the Carmen Bergeron/County Road 17 and Street 1/County Road 17 intersections which are projected to operate over capacity with an overall LOS 'F' during both peak hours.

The critical movements which are operating over capacity with an LOS 'F' include:

Carmen Bergeron/County Road 17

- Eastbound through movement during both peak hours
- Eastbound right-turn movement during the afternoon peak hour
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Street 1/County Road 17

- Eastbound through movement during the afternoon peak hour
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

In terms of 95th percentile queues, the storage capacity is not exceeded.

Total 2055 Conditions – Option 3

The following Table 29 summarizes the intersection operational analysis of the study area intersections for the total projected 2055 conditions. Detailed Synchro output data for 2045 future total projected conditions is provided in Appendix H.

Table 29: 2055 Total Projected Operations – Existing Intersections – Option 3

		Storage AM Peak Hour			PM Peak Hour					
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
	Carmen Bergeron/County Road 17 - Actuated-Uncoordinated Signal									
EBT	2 T	-	9.87	4008.3	F	#90.3	28.58	12451.0	F	#202.8

		Storage		AM Pea	ak Hou	r		PM Pea	ak Hour	
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
EBR	1 R	80	0.80	23.9	С	#13.0	1.10	84.6	F	#24.4
WBL	1 L	125	0.51	12.6	А	4	0.55	10.7	А	7
WBT	2 T	-	6.22	2363.0	F	#148.9	2.89	868.6	F	#111.0
NBL	1 L	-	2.65	781.8	F	#31.3	2.83	873.4	F	#28.7
NBR	1 R	-	0.48	17.4	А	#6.0	0.76	25.4	С	#10.9
	Overall		8.59	2621.5	F	-	26.40	7027.7	F	-
	C	armen Be	rgeron/F	Richelieu	- Actu	ated-Unco	ordinate	ed Signal		
EBL	1 L	-	0.42	10.6	А	13	0.60	20.3	А	24
EB	1 T/R	-	0.10	6.0	А	5	0.20	10.1	А	13
WBL	1 L	-	0.05	5.9	А	3	0.07	9.2	А	5
WB	1 T/R	-	0.42	4.9	А	11	0.46	6.0	А	16
NB	1 T/L & 1 T/R	-	0.04	5.8	A	2	0.09	5.1	A	5
SB	1 T/L	-	0.22	8.8	А	12	0.79	24.1	С	#73.4
SBR	1 R	-	0.31	3.1	А	8	0.21	2.7	А	7
	Overall		0.38	6.1	Α	-	0.49	13.8	Α	-
Poupart/Richelieu - Actuated-Uncoordinated Signal										
EBL	1 L	20	0.17	7.6	А	7	0.40	11.7	А	20
EB	1 T/R	-	0.17	3.3	А	5	0.52	5.1	А	16
WB	1 L/T/R	-	0.13	5.9	А	6	0.18	7.7	А	10
NB	1 T/L & 1 T/R	-	0.26	5.9	A	11	0.53	10.3	А	22
SB	1 L/T/R	-	0.21	4.0	А	9	0.64	11.2	В	36
	Overall		0.19	5.3	Α	-	0.44	9.2	Α	-
	I	P	oupart/\	Valmart I	Drivewa	ay - Unsig	nalized			
EB	1 L/R	-	0.03	9.3	А	1	0.30	18.7	A	9
NB	1 T & 1 T/L	-	0.14	0.0	А	0	0.18	0.0	А	0
SB	1 T & 1 T/R	-	0.07	0.0	А	0	0.20	0.0	А	0
Overall			0.30	0.9	Α	-	0.46	2.4	Α	-
	I	Street 1/C	ounty R	oad 17 -	Actuat	ed-Uncoo	rdinated	Signal		
EBT	2 T	-	1.04	42.0	F	#465.6	2.47	679.2	F	#1569.0
EBR	1 R	-	0.78	8.7	С	104	1.55	267.8	F	#818.7

	AM Peak Hour				PM Peak Hour					
Dir.	Lanes	Length (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
WBL	1 L	-	0.86	121.8	D	#21.0	0.24	17.2	А	4
WBT	2 T	-	1.95	446.9	F	#1171.5	1.50	247.7	F	#828.8
NBL	1 L	-	9.34	3770.8	F	#1057.5	7.73	3048.0	F	#880.5
NBR	1 R	-	0.04	55.3	А	6	0.18	62.5	А	18
	Overall		3.06	856.9	F	-	3.44	749.1	F	-

Similar to the 2045 total projected conditions, Table 29 shows that with the planned network improvements and total projected 2055 traffic volumes, study area intersections are projected to continue operating with an excellent overall LOS 'A' with the exception of the Carmen Bergeron/County Road 17 and Street 1/County Road 17 intersections which are projected to operate over capacity with an overall LOS 'F' during both peak hours.

The critical movements which are operating over capacity with an LOS 'F' include:

Carmen Bergeron/County Road 17

- Eastbound through movement during both peak hours
- Eastbound right-turn movement during the afternoon peak hour
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

Street 1/County Road 17

- Eastbound through movement during both peak hours
- Westbound through movement during both peak hours
- Northbound left-turn movement during both peak hours

In terms of 95th percentile queues, the storage capacity is not exceeded.

4.0 Water Servicing

4.1 Concept Option 1

Water servicing for SSA1 was evaluated under existing and future conditions, both scenarios require the addition of three (3) water connections to the existing system at the following locations:

- One (1) connection to the existing 150 mm watermain at the easterly cul-de-sac on De La Baie Road
- One (1) connection to the existing 300 mm watermain at the western extent of Richelieu Street
- One (1) connection to the existing 300 mm watermain at the intersection of Richelieu Street and Poupart Road.

The recommended maximum and minimum pressure requirements found within Clarence-Rockland's Design Guidelines were followed for this assessment. The guidelines state that for the maximum day demand plus fire flow scenario, a minimum pressure of 140 kPa (20 psi) shall be maintained at all points within the distribution system. Note that these guidelines are based on the requirements found in the Ministry of the Environment, Design Guidelines for Drinking Water Systems (2008).

Domestic water demands (see Appendix I) were estimated using two approaches. The first approach was based on the number of employees (85 employees per hectare per the Water Master Plan prepared by Jacobs in 2023). The second approach used the standard 28,000 L/ha/day which was in accordance with the City of Clarence-Rockland's design guidelines for water distribution systems. Given the uncertainty with the number of employees, the latter approach was used for this study. This approach projected lower demands which more closely align with the demands estimated in the Master Plan. The estimated demands for average day, maximum day and peak hour conditions are summarized in Table 30.

Demand Scenario	Total Demands (L/s)			
Average Day Demand	17.39			
Maximum Day Demand	31.31			
Peak Hour Demand	46.96			

Table 30: Option 1 Estimated Domestic Demands

The required fire flow target for the subject lands was 283 L/s as shown in the Master Plan. At the detailed design stage, an engineer would need to carry out detailed fire flow calculations respective to their critical site area.

Boundary conditions for the existing water distribution system were provided by Jacobs (Appendix I) at the three (3) proposed connection locations listed above. It was understood from this information that the maximum available fire flow in the system was approximately 189 L/s. Boundary conditions were also provided for maximum day plus fire flows of 130 L/s and 175 L/s. The hydraulic boundary conditions were summarized in Table 31.

Demand Scenario	De La Baie Connection (m)	Richelieu Connection 1 (m)	Richelieu Connection 2 (m)
Average Day Demand	95.72	95.73	95.73
Peak Hour Demand	95.17	95.22	95.26
Max Day + Fire Flow (130 L/s)	80.71	84.54	87.19
Max Day + Fire Flow (175 L/s)	70.75	77.22	81.83

 Table 31: Option 1 Hydraulic Boundary Conditions

The proposed water servicing for the lands was a 300 mm diameter watermain loop which connects to the existing system as discussed above. For modelling purposes, the inner diameter was input as 300 mm and assigned a roughness coefficient (C-factor) of 120.

A hydraulic water model within the WaterCAD® software platform was used to carry out a hydraulic network analysis for SSA1. The water demands and boundary conditions reported in Table 30 and Table 31 were inputted into the model for each demand scenario. The site is generally flat east to west (52 to 53 m elevation) with a rapid increase in elevation at the southeast corner of SSA1 (+/- 64 m elevation adjacent to Poupart Street). The simulation results for existing conditions and topography are as follows (see Appendix I for model schematics):

- Under average day demands, the pressures were found to range between 311 kPa (45 psi) and 420 kPa (61 psi) which was generally within the recommended pressure range per the design guidelines. The high elevation at the southeast corner of the site was expected to experience pressures below 350 kPa (51 psi).
- Under the maximum day plus fire flow scenario for a fire flow of 130 L/s, it was expected that the entire distribution system would be able to provide 130 L/s with pressures above 140 kPa (20 psi).
- Under the maximum day plus fire flow scenario for a fire flow of 175 L/s, it was expected that the entire distribution system would be able to provide 175 L/s except at the southeast corner of the site. Given the high elevations in this area, the expected fire flow was between 130 L/s and 175 L/s. It was noted that the existing system was not capable of supplying 283 L/s of fire flow to the subject lands. In the absence of modifications to the existing system, the remaining fire flow would need to be supplemented from other sources.
- Under peak hour demands, the minimum pressure within the lands was found to be 306 kPa (44 psi) which occurs at the highest model elevation (southeast corner). The remaining pressures in the distribution system were expected to exceed 275 kPa (40 psi) as recommended in the design guidelines.

Under future conditions, the required fire flow for the subject lands was 283 L/s as stated in the Master Plan. Boundary conditions for future conditions were not provided for this assessment as future system modifications are actively being assessed by Jacobs. Therefore, conceptual water servicing for SSA1 under future conditions cannot be confirmed at this time. However, a theoretical servicing assessment was carried out using the model whereby the hydraulic grade line (HGL) at each connection was calculated to provide 283 L/s to most of SSA1. It was assumed that the HGL at each connection was the same. Model results are included in Appendix I which show that an HGL of 79.50 m at each connection location was expected to provide a fire flow of 283 L/s to most of SSA1. It was noted the boundary conditions for future conditions will need to be reviewed and re-assessed following confirmation by Jacobs.

4.2 Concept Option 2

As was done for concept option 1, water servicing for SSA1 was evaluated under existing and future conditions. Three connections to the existing water distribution system were required to meet both scenarios. The following were the proposed connection locations:

- One connection to the existing 150 mm watermain at the easterly cul-de-sac on De La Baie Road
- One connection to the existing 300 mm watermain at the western extent of Richelieu Street
- One connection to the existing 300 mm watermain at the intersection of Richelieu Street and Poupart Road.

The recommended maximum and minimum pressure requirements found within the City of Clarence-Rockland's Design Guidelines were followed for this assessment. The guidelines also state that for the maximum day demand plus fire flow scenario, a minimum pressure of 140 kPa (20 psi) shall be maintained at all points within the distribution system. Note that these guidelines are based on the requirements found in the Ministry of the Environment, Design Guidelines for Drinking Water Systems (2008).

Domestic water demands (included in Appendix I) were estimated using two approaches. The first approach was based on the number of employees (85 employees per hectare per the Master Plan prepared by Jacobs in 2023). The second approach used the standard 28,000 L/ha/day which was in accordance with the City's design guidelines for water distribution systems. Given the uncertainty with the number of employees, the latter approach was used for this study. This approach also projected lower demands which more closely aligned with the demands estimated in the Master Plan. The estimated demands for average day, maximum day and peak hour conditions were summarized in Table 32.

Demand Scenario	Total Demands (L/s)			
Average Day Demand	16.52			
Maximum Day Demand	29.73			
Peak Hour Demand	44.60			

Table 32: Option 3 Estimated Domestic Demands

The required fire flow target for SSA1 was 283 L/s as shown in the Master Plan. At the detailed design stage, an engineer would need to carry out detailed fire flow calculations respective to their critical site area.

Boundary conditions for the existing water distribution system were provided by Jacobs (Appendix I) at the three proposed connection locations listed above. It was understood from this information that the maximum available fire flow in the system was approximately 189 L/s. Boundary conditions were also provided for maximum day plus fire flows of 130 L/s and 175 L/s. See the hydraulic boundary conditions summarized in Table 33.

Demand Scenario	De La Baie Connection (m)	Richelieu Connection 1 (m)	Richelieu Connection 2 (m)
Average Day Demand	95.72	95.73	95.73
Peak Hour Demand	95.17	95.22	95.26

Table 33: Option 3 Hydraulic Boundary Conditions

Demand Scenario	De La Baie Connection (m)	Richelieu Connection 1 (m)	Richelieu Connection 2 (m)
Max Day + Fire Flow (130 L/s)	80.71	84.54	87.19
Max Day + Fire Flow (175 L/s)	70.75	77.22	81.83

The proposed water servicing for the lands was a 300 mm diameter watermain loop which connects to the existing system as discussed above. For modelling purposes, the inner diameter was input as 300 mm and assigned a roughness coefficient (C-factor) of 120.

A hydraulic water model within the WaterCAD® software platform was used to carry out a hydraulic network analysis for SSA1. The water demands and boundary conditions reported in Table 32 and Table 33 were inputted into the model for each demand scenario. As mentioned previously the site is generally flat east to west with a rapid increase in elevation at the southeast corner. The simulation results for existing conditions and topography were as follows:

- Under average day demands, the pressures were found to range between 311 kPa (45 psi) and 420 kPa (61 psi) which was generally within the recommended pressure range per the design guidelines. The high elevation at the southeast corner of the site was expected to experience pressures below 350 kPa (51 psi).
- Under the maximum day plus fire flow scenario for a fire flow of 130 L/s, it was expected that the entire distribution system would be able to provide 130 L/s with pressures above 140 kPa (20 psi).
- Under the maximum day plus fire flow scenario for a fire flow of 175 L/s, it was expected that the entire distribution system would be able to provide 175 L/s except at the southeast corner of the site. Given the high elevations in this area, the expected fire flow was between 130 L/s and 175 L/s. It was noted that the existing system was not capable of supplying 283 L/s of fire flow to the subject lands. In the absence of modifications to the existing system, the remaining fire flow would need to be supplemented from other sources.
- Under peak hour demands, the minimum pressure within the lands was found to be 306 kPa (44 psi) which was located at the highest model elevation (southeast corner). The remaining pressures in the distribution system were expected to exceed 275 kPa (40 psi) as recommended in the design guidelines.

Under future conditions, the required fire flow for the subject lands was 283 L/s as stated in the Master Plan. Boundary conditions for future conditions were not provided for this assessment as future system modifications are actively being assessed by Jacobs. Therefore, conceptual water servicing for the subject lands under future conditions cannot be confirmed at this time. However, a theoretical servicing assessment was carried out using the model whereby the hydraulic grade line (HGL) at each connection was calculated to provide 283 L/s to the majority of the site. It was assumed that the HGL at each connection was the same. Model results were included in Appendix I which showed that an HGL of 79.50 m at each connection location was expected to provide a fire flow of 283 L/s to most of SSA1. It was noted the boundary conditions for future conditions will need to be reviewed and re-assessed following confirmation by Jacobs.

5.0 Sanitary Servicing

5.1 Concept Option 1

The sanitary system conditions for SSA1 were evaluated for future servicing. Based on the Wastewater Master Plan by Jacobs (2023) for the City of Clarence-Rockland, wastewater for SSA1 was designed to outlet to a pumping station (SPS-3) northeast of Laurier Street and Laporte Street (refer to Appendix J for excerpts).

The proposed wastewater system was evaluated in accordance with the City of Clarence-Rockland's Design Guidelines. The wastewater residential unit rate used was 350 L/persons/day and 28,000 L/gross ha for commercial development. Based on the design criteria and site constraints, the total design peak flow for the development was 51.30 L/s (conceptual sanitary sewer layout and design sheet included in Appendix J).

The existing topography of the lands is generally flat east to west (52 to 53 m elevation) with a rapid increase in elevation at the southeast corner of the lands (+/- 64 m elevation adjacent to Poupart Street). A combination of 200 mm and 300 mm diameter pipes were proposed to service SSA1, with the 300 mm diameter pipes required for the downstream portions of SSA1. The invert elevation downstream at the pumping station (SPS-3) was determined by ensuring pipes were sized to convey flows while maintaining a minimum of 1.8 m of cover at the upstream locations. The current sewer invert elevation at the pumping station was estimated to be 46.5 m, which was approximately 4 m below the ground surface near the pumping station. Invert elevations provided were high-level and would need to be further refined at the detailed design stage. It was anticipated that a combination of steeper slopes and drops would be designed towards the southeast corner of the site to reduce the sewer depth given the high elevations in this area.

It was noted that the design for SSA1 should adhere to the latest Consolidated Linear Infrastructure Environmental Compliance Approval (CLI ECA) for the City of Clarence-Rockland and associated design criteria.

5.2 Concept Option 3

The sanitary system conditions for SSA1 were evaluated for future servicing. Similarly to option 1, wastewater for these lands was designed to outlet to a SPS-3 northeast of Laurier Street and Laporte Street (refer to Appendix J for excerpts) based on the Wastewater Master Plan by Jacobs (2023).

The proposed wastewater system was evaluated in accordance with the Clarence-Rockland Design Guidelines. The wastewater residential unit rate used for the study was 350 L/persons/day and 28,000 L/gross ha for commercial development. Based on the design criteria and site constraints, the total design peak flow for the development was 51.30 L/s (conceptual sanitary sewer layout and design sheet included in Appendix J).

The proposed servicing for the area was 200 mm and 300 mm diameter pipes, with the 300 mm pipes required for the downstream portions of SSA1. The invert elevation downstream at the pumping station (SPS-3) was determined by ensuring the pipes were sized to convey flows while maintaining a minimum of 1.8 m of cover at the upstream locations. The current sewer invert elevation at the pumping station was estimated to be 46.5 m, which was approximately 4 m below

City of Clarence-Rockland Rockland West Secondary Plan – Phase 2 Report

the ground surface near the pumping station. Proposed invert elevations were high-level and require further refinement at the detailed design stage. As discussed previously, elevations increase rapidly in the southeast corner of the site, it was anticipated that a combination of steeper slopes and drops will be designed towards the southeast corner to reduce the sewer depth.

It was noted that the design for the lands should adhere to the latest Consolidated Linear Infrastructure Environmental Compliance Approval (CLI ECA) for Clarence Rockland and associated design criteria.

6.0 Storm Water

6.1 Concept Option 1

Storm servicing for SSA1 is required to be consistent with the latest version of the City of Clarence-Rockland's Design Guidelines Subdivisions and Site Plans as well as the latest Consolidated Linear Infrastructure Environmental Compliance Approval (CLI ECA) for the City of Clarence-Rockland and associated Design Criteria.

The proposed storm sewer servicing network was sized to accommodate the minor system, 1:5year event, plus any upstream inflow as required. Business Park and Commercial lands should detain up to the 1:100-year event on site, while residential lands would convey major overland flow to the downstream stormwater management facilities.

Stormwater servicing proposed for concept option 1 used the existing outlets for SSA1. Existing outlet locations are the culvert under County Road 17, the drainage channels along De La Baie Road and collection of upstream drainage into the RONA Site.

Two wet ponds were proposed to provide water quality and quantity control to pre-development levels for the western portion of SSA1 and most of the central lands and would discharge to the culvert under County Road 17. An additional wet pond at the Richelieu Street connection would provide water quality and quantity control for the eastern portion of SSA1. A dry pond located at the southern end of the RONA site would provide quantity control for major system overland flow from the eastern residential area; the minor system from this area was intended to drain via the minor system to the Richelieu wet pond. See the Pond area overlay shown on Figure 2 for concept option 1. Note that the Pond overlay demonstrates the approximate location of the proposed storm water ponds only, the underlying land-use for each storm pond location is the land-use designation for the area. A summary of the proposed stormwater management facilities for option 1 can be seen in Table 34.

Pond	Туре	Outlet	Drainage Area (ha) ⁽¹⁾	Block Area (ha)	1:00 yr Allowable Release (l/s)
1	Wet Pond	County Road 17 Culvert	11.1	0.8	64
2	Wet Pond	County Road 17 Culvert	21.2	1.4	119
3	Wet Pond	De La Baie Road	13.7	0.6	1628
4	Dry Pond	RONA Site	4.0	0.1	290
Note:					
(1) Drainage Area only includes development area. External drainage areas were accounted for in pond sizing and can be seen in Appendix K.					

Table 34: Option 1 Proposed Storm Water Management Facilities

The allowable release rates for the wet ponds to the County Road 17 Culvert were pro-rated based on the contributing drainage areas and the overall pre-development flow rate to the culvert. This accounted for existing upstream drainage areas which would be conveyed via the open space lands. The flow rate to De La Baie Road was set to the pre-development release rate and assumes that upstream flows would be captured uncontrolled into the proposed storm sewer servicing. The dry pond discharges above the 1:5-year event to the existing drainage ditch at the

Pond sizing would be subject to change following a hydrogeological water balance assessment for the lands which will identify recharge requirements based on the ECA CLI. This may include providing recharge to meet pre-development conditions on the property or, if site constraints prevent recharge, controlling the runoff from the 90th percentile storm event. Other CLI ECA requirements related to water quality, erosion control, water quantity and flood control will also have to be met.

6.2 Concept Option 3

Storm servicing for SSA1 is required to be consistent with the latest version of the City of Clarence-Rockland's Design Guidelines Subdivisions and Site Plans as well as the latest Consolidated Linear Infrastructure Environmental Compliance Approval (CLI ECA) for the City of Clarence-Rockland and associated Design Criteria.

The storm sewer servicing network should be sized to accommodate the minor system, 1:5-year event, plus any upstream inflow as required. Business Park and Commercial lands should detain up to the 1:100-year event on site, while residential lands would convey major overland flow to the downstream stormwater management facilities.

Stormwater servicing proposed for option 3 used the existing outlets for the lands. Existing outlets include the culvert under County Road 17, the drainage channels along De La Baie Road and collection of upstream drainage into the RONA Site.

Two wet ponds would provide water quality and quantity control to pre-development levels for the western portion of SSA1, across the central area of the site up to street 4 and would discharge to the culvert under County Road 17. A wet pond at the Richelieu Street connection would provide water quality and quantity control for the eastern portion of the site. A dry pond located at the southern end of the RONA site would provide quantity control for major system overland flow from the eastern residential area, the minor system from this area was intended to drain via the minor system to the Richelieu wet pond. See the Pond overlay shown on Figure 4 for concept option 3. Note that the Pond overlay demonstrates the approximate location of the proposed storm water ponds only, the underlying land-use for each storm pond location is the land-use designation for the area. A list of the proposed stormwater management facilities can be seen in Table 35.

Pond	Туре	Outlet	Drainage Area (ha) ⁽¹⁾	Block Area (ha)	1:00 yr Allowable Release (l/s)
1	Wet Pond	County Road 17 Culvert	11.1	0.8	64
2	Wet Pond	County Road 17 Culvert	19.8	1.3	119
3	Wet Pond	De La Baie Road	15.2	0.6	1628
4	Dry Pond	RONA Site	3.8	0.1	290
Note:	Note:				
(1)	(1) Drainage Area only included development area. External drainage areas were accounted for in pond sizing				
	and can be seen in Appendix K.				

Table 35: Option 3 Proposed Stormwater Management Facilities

The allowable release rates for the wet ponds to the County Road 17 Culvert were pro-rated based on the contributing drainage areas and the overall pre-development flow rate to the culvert. This approach accounted for existing upstream drainage areas which would be conveyed via the open space lands. The flow rate to De La Baie Road was set to the pre-development release rate and assumed that upstream flows would be captured uncontrolled into the proposed storm sewer

servicing. The dry pond discharges above the 1:5-year event to the existing drainage ditch at the 1:5-year design event for the ditch.

Pond sizing may change following the hydrogeological water balance assessment for SSA1 which would identify recharge requirements based on the ECA CLI. This could include providing recharge to meet pre-development conditions on the property or, if site constraints prevent recharge, then controlling the runoff from the 90th percentile storm event. Other CLI ECA requirements related to water quality, erosion control, water quantity and flood control would also have to be met.

7.0 Evaluation of Detailed Solution

7.1 Evaluation of Concept Options

The evaluation process consisted of a review of the short-listed land-use solutions in consideration of the criteria described in Table 36 and followed the evaluation and selection methodology described previously in Section 2.1.

Criteria	Description
Natural Environment Considerations	Natural features, natural heritage areas, Areas of Natural and Significant Interest, designated natural areas, watercourses and aquatic habitat
Social and Cultural Environment Considerations	Proximity of facilities to residential, commercial and institutions, archeological and cultural features, designated heritage features, well or wellhead protection areas, land-use and planning designations
Technical Feasibility	Constructability, maintaining or enhancing water quality, reliability and security of drinking water system, ease of connection to existing infrastructure and operating and maintenance requirements, addresses aging infrastructure, expandability
Financial Considerations	Capital costs, Operation and Maintenance costs

Table 36: Summary of Evaluation Criteria

The relative impact for each criterion to each potential solution was assessed based on whether the alternative was 'Preferred', 'Less Preferred', 'Least Preferred' or 'Not Feasible' with respect to that criterion. The four (4) evaluation criteria were assigned equal weights as they were considered to have equal importance in this evaluation at the EA stage. See the completed evaluation matrix in Table 37 below.

Table 37: Evaluation Matrix

	Option 1	Option 3
Natural Environment	 Greater waste generation and air and noise pollution (due to higher populations) Minimal potential impact to natural heritage environment Inclusion of environmental and open space overlay 	 Minimal potential impact to natural heritage environment Inclusion of environmental and open space overlay
Evaluation	Less Preferred	Preferred
Social and Cultural Environment	 Highest increase in traffic through Study Area Inclusion of pedestrian friendly commercial main corridor (lesser demand land use) 	 Greatest increase in highest-demand business park area
Evaluation	Less Preferred	Preferred
Technical Feasibility	 Three (3) water connections to existing distribution system Expected max day water demand plus fire flow that the existing distribution system could accomplish was less than required target Residential areas require dual drainage with minor system and major overland flow system for storm water Business Park and Commercial areas would release to the minor system and detain the 1:100 year on-site Four (4) stormwater ponds required Single-lane roundabouts to manage traffic at all intersections except street 1/street 2 Two-lane intersection to manage projected traffic at street 1/street 2 	 Three (3) water connections to existing distribution system Expected max day water demand plus fire flow that the existing distribution system could accomplish was less than required target Residential areas require dual drainage with minor system and major overland flow system for storm water Business Park and Commercial areas would release to the minor system and detain the 1:100 year on-site Four (4) stormwater ponds required Single-lane roundabouts to manage traffic at all intersections
Evaluation	Less Preferred	Preferred
Financial Considerations Evaluation	 Increase in economic activity in region High servicing and transit network capital cost Less Preferred 	 Increase in economic activity in region High servicing and transit network capital cost Less Preferred
Overall Evaluation	Less Preferred	Preferred

As per the matrix, option 3 was the preferred Secondary Plan land use concept option. This solution provides a large amount of business park area to increase and support industrial activity in the region, while providing a diverse mix of land uses to aid future development in the City of Clarence-Rockland.

The servicing solutions between options 1 and 3 had only marginal differences and hence the concept options had similar capital costs and technical challenges. A technical challenge that was found to be present for both concept options was the poor level of service projected for the Carmen Bergeron/County Road 17 intersection based on the transportation analysis findings. Further discussion and recommendations for this challenge have been provided in Section 7.2.

Both concept options have minimal potential impacts to the natural environment and had congruent environmental and open space overlays. While option 1 and 3 performed the same with respect to the Natural Environment Considerations, Technical Feasibility, and Financial Considerations, option 3 performed better in Social and Cultural Environment Considerations as it more closely aligned to the needs of the community and the vision of the City by providing more business park land use area. Hence option 3 was the preferred solution for the Secondary Plan.

7.2 Transportation Findings and Recommendations

Upon the completion of the transportation analysis for SSA1, the following transportation findings and recommendations are offered with respect to both conception option 1 and 3:

- Existing intersections are currently operating with acceptable Levels of Service during both weekday morning and afternoon peak hours. However, with the infill of background developments, Carmen Bergeron/County Road 17 is projected to operate over capacity.
- Based on the preferred Concept Plan (Option 3), full build-out is projected to generate new two-way vehicle volumes of 1,154 veh/h and 1,083 veh/h during weekday morning and afternoon peak hours, respectively.
- New site-generated trips from the SSA1 are not anticipated to cause significant impact on the existing and planned roadway network.

Potential mitigation measures to improve capacity or reduce travel demand on County Road 17 have yet to be developed and are beyond the scope of this report.

As new development occurs, it is expected that further operational analysis and be conducted at the development application level for each land use in the form of traffic impact studies to provide more detailed assessments of intersections within the study area and develop necessary transportation network measures.

8.0 Public and Stakeholder Consultation

Effective consultation was key to successful environmental assessment planning. Through an effective consultation program, the proponent can generate meaningful dialogue between project planners and stakeholders.

8.1 Stakeholder Consultation

A Notice of Study Commencement was issued on December 10th, 2021 and a meeting with the RWSP area landowners took place on December 22nd, 2021 (see Notice and presentation slides in Appendix L). The meeting introduced SSA1, explained the MCEA and the Planning Act processes and allowed landowners to ask questions about the processes and approvals. The meeting and subsequent meetings were posted on the City's website. A second meeting with SSA1 landowners occurred on April 7th, 2022 (see presentation slides in Appendix L) to present the Shore-Tanner Market Study findings and an initial evaluation on the development potential of SSA1.

A Notice of Public Meeting was issued for a public meeting held on May 4th, 2022. The Shore-Tanner market study summary completed for the Secondary plan was also included on the notice and posted on the City's website. See the link to the summary and Notice below, and see the Notice in Appendix L.

www.clarence-rockland.com/en/hotel-de-ville/Plan_Secondaire___Ouest_de_Rockland.aspx

8.2 Public Information Centre

A Public Information Centre (PIC) was held on December 5th, 2023, to discuss the Phase 1 and Phase 2 Secondary Plan Class EA findings. The PIC allowed for open discussions with the attendees on the project, including the presentation of the proposed preferred servicing solution. In advance of the PIC, a PIC Notice was posted on the City's website. See the link to the Notice below, and the PIC Notice and presentation slides in Appendix M. https://www.clarence-

rockland.com/en/nouvelles/Avis_de_centre_d_information_du_public_.aspx

Comments received during and following the PIC have been summarized in Table 38.

Stakeholder(s)	Comment ¹	Action
Landowner (2)	Expressed concerns and	JLR and the City clarified during the
	questions on the environmental	PIC that the land was identified to
	overlay and how this would impact	have an environmental concern but
	their land.	would still be designated as
		Business Park with an overlay
		requiring further study such as an
		Environmental Impact Study at time
		of development. The natural
		heritage features were derived from
		available information including the
		United Counties of Prescott Official
		Plan and their mapping.

Table 38: Summary of PIC Comments

Stakeholder(s)	Comment ¹	Action	
Landowner (3)	Expressed concern with the desktop Environmental Study completed. Individuals suggested a field study would have been more comprehensive.	JLR clarified during the PIC that a field investigation was not within the scope of the project and waterways on concept figures align with the Counties Official Plan and/or GIS data.	
Landowners (3+)	Questions were received on the timing of the Secondary Plan, and on the overall development.	The City and JLR responded during the PIC that timing may vary as after report finalization, the UCPR will have a 6-month review window. For development, the final ultimate solution timing is unknown but will be greater than 10 years.	
City Resident	Expressed preference for the commercial core, concept option 1, as it offers more diversity of land-use for the City.	Considered in evaluation.	
Landowner	Expressed preference for the commercial core, concept option 1, as it would attract more people.	Considered in evaluation.	
Landowners (2)	Expressed preference for the large business park area, concept option 3, as it is simpler.	Considered in evaluation.	
Landowner (written response following PIC)	Watercourse data is incorrect, the north/south waterway shown in the land-use figures is not a waterway but a ditch that is not water filled for most of the year. Land should not be zoned environmental overlay.	Land under the environmental overlay is designated according to the underlying land use zone. This does not prevent the land from being developed. The watercourse location is in alignment with the UCPR Official Plan and their latest GIS data and the land was identified as having potential to be fish habitat according to the desktop environmental study. At the time of detailed design, further field studies will confirm presence of waterways and species.	
Landowner (written response following PIC)	There is no access to a portion of our properties in the south of the proposed SSA1 area, creating a landlocked situation for the bigger portion of our properties. There should be a road that goes north- south up the ridge and another road going east-west to maintain access to the whole of the properties.	Roads were revised to incorporate a minor collector extending to the ridge on the southern edge of SSA1. It is also noted that roads in the Secondary Plan Phase 2 report only include major roadways to service the overall area. Small roads/driveways will be built off the major roadways that are not dictated on the land-use plans. This	

Stakeholder(s)	Comment ¹	Action
		will be established during detailed
	Expressed preference for option 1	design.
	as it zones the north part of the	
	property as high-density residential and it is thought that this will attract more developers. The north/south minor collector is better situated in option 3 than option 1 as it services more properties to be developed	Option 3 allows for both medium and high-density residential development, this has been clarified within the report body following comment. Preference was noted and considered in evaluation.
Notes:		
 (1) Comments have been summarized from in-person conversations that took place during the PIC and written comments that were provided to the project team following the PIC. 		

9.0 **Project Description**

This section provides a high-level description of the proposed project phasing, project impacts, and permit and approval requirements.

9.1 **Project Overview**

As identified in Section 7.0 concept option 3 was recommended as the preferred solution for the Secondary Plan. Generally, this solution would consist of the following infrastructure developments:

- Water distribution system composed of 300 mm watermain loop with connections to the existing water distribution system at the following three locations:
 - 150 mm watermain at the easterly cul-de-sac on De La Baie Road
 - o 300 mm watermain at the western extent of Richelieu Street
 - o 300 mm watermain at the intersection of Richelieu Street and Poupart Road
- Sanitary collection system composed of 200 mm and 300 mm diameter sewers connecting to SPS-3 located northeast of Laurier Street and Laporte Street
- Four stormwater ponds including (see approximate locations in **Figure 2**, pond size and locations are subject to modifications during detailed design):
 - Two wet ponds on either side of street 1 to the northwest of SSA1
 - One wet pond at the Richelieu Street connection
 - One dry pond at the southern end of the RONA site
- Construction of streets 1, 2, 3 and 4 with intersections to the existing Highway 17, Poupart Road, Richelieu Street, and interior intersections

See Sections 3.10, 4.2, 5.2, and 6.2 for detailed analysis and specifications for the proposed solution.

9.2 Project Phasing

It was proposed that SSA1 be developed in two phases to ultimately reach the preferred concept option. In Phase 1, all roads and infrastructure north of, and including, street 2 (the west/east minor collector) would be constructed, see the dotted hatched area representing Phase 1 in Figure 20. This would include water (all three proposed water connections) and sanitary servicing, and transit network construction as per Sections 3.10, 4.2, and 5.2. All storm water ponds would be constructed to full capacity in Phase 1 as per Section 6.2. Following the completion of Phase 1, businesses could begin to populate SSA1 prior to the complete development of SSA1. To allow construction for water servicing, all roads included in this area would be required to be constructed first - watermains would then be constructed to follow the road network. In Phase 1 the sanitary sewer connection would also be made to the identified pumping station (SPS-3) northeast of Laurier Street and Laporte Street as per Section 5.2.

Phase 2 of development would consist of constructing all the remaining roads and infrastructure south of the proposed street 2, see the diagonal-line hatched area representing Phase 2 in Figure 20, beginning with the proposed roads. Watermains and sewers would then be constructed to follow the roads and as described in Sections 4.2 and 5.2. Note, no stormwater infrastructure or water connections to the existing system would be included Phase 2.

Figure 20: Phasing of Preferred Solution

Each phase of construction would be further broken down into individual projects for the water servicing, sanitary servicing, stormwater, and individual road construction. Each project would consist of the following stages: preliminary design, detailed design, finalize contract drawings and specifications, approvals, tender and contract award, and construction.

9.3 Impacts on the Natural, Social and Economic Environments

Construction and operation of the proposed works would lead to potential impacts, both positive and negative, upon the natural, social, and economic environments. The following section summarizes potential impacts and presents proposed mitigating measures to reduce any negative impacts.

Natural Heritage Environment

The Bowfin Environmental Study of the SSA1 found that the area does not contain any of the following natural heritage features:

- Provincially significant wetlands
- Unevaluated wetlands
- Coastal wetlands

- Valleylands
- Identified significant wildlife habitat
- Significant woodlands
- Areas of National and Scientific Interest

Hence there was determined to be minimal potential negative impact to natural heritage environment. There is a watercourse in SSA1 and negative impacts to the watercourse and subsequently the fish habitat could be mitigated by incorporating a development setback and landscaping interventions. Additionally, there are two large cultural forests which have the potential to be negatively impacted. A protected buffer could be made surrounding Endangered or Threatened species, including the Butternut tree, to mitigate negative impacts to forests. The application of these and all recommendations made in the Bowfin Environmental Assessment should be enacted.

It was noted that SSA1 does not fall within a source water protection vulnerable area. A portion of the area is classified as an Intake Protection Zone 2, which presents a lower degree of risk to the local drinking water supply. A geotechnical and hydrogeological study of the area is recommended to confirm risks associated with drinking water protection in the region at time of development.

Engineering and Technical Consideration

The current water distribution system for the City of Rockland-Clarence does not extend past Richelieu to the SSA1, hence the proposed solution would provide water to a greater number of potential businesses and residents within SSA1 following development. The fire flows achievable in SSA1 were found to be below the target required fire flows. Further investigation would be required to investigate alternatives for increasing fire flow in SSA1 (for example alternatives may include constructing reservoirs on individual properties within SSA1 or connecting to storm water ponds).

Traffic would increase through SSA1 as a result of more employment and residential opportunities. This would be managed with the construction of appropriate intersections discussed in Section 3.10. Single lane roundabouts were selected to minimize congestion through the region. As mentioned, the LOS for intersections with County Road 17 are expected to decrease over the development horizon, traffic originating from SSA1 is expected to contribute minimally to the overall traffic from County Road 17. Recommendations have been provided in Section 7.2 to mitigate negative traffic impacts.

Social/Community Well Being

Other than minor short-term negative impacts due to the noise and activity of construction, the social environment would be positively impacted by the proposed upgrades because of the increased access to water and sanitary servicing in SSA1, and the corresponding increase in commerce. SSA1 is currently not accessible to the community for commerce or dwelling due to zoning and servicing limitations, incorporating infrastructure for servicing and rezoning lands would invite businesses and residents to the area to further build out the community in the region.

Current landowners were included in the planning process; they may face negative impacts particularly during construction. The noise from construction could be mitigated via limiting the operation hours of noisy machinery and providing advance notice to the neighboring property
owners. The reduced air quality could be mitigated by promoting offsite manufacturing and onsite assembling practices. Construction vehicles could be hosed down prior to leaving the site to reduce mud carry over onto the streets. The City should work with landowners throughout the development process and inform them of all upcoming works.

Economic Environment

The initial economic environment would be impacted negatively with the capital investment required to undertake the proposed construction. Long-term, the economic environment for residents of the City of Rockland-Clarence would be positively impacted as there would be more economic activity in the region through the development of the SSA1 as concluded by the Shore-Tanner Market Study.

9.4 **Permits and Approvals**

A number of approvals would be required prior to implementing the proposed works. These may include:

- Amendments to the Drinking Water Works Permit and Municipal Drinking Water License from the Ministry of the Environment, Conservation and Parks (MECP)
- Environmental Activity Sector Registry or Permit to Take Water for Construction dewatering from the MECP, if required
- Rezoning, Subdivision and Site Plan approval from the Municipality
- Building Permit from the Municipality
- Electrical Safety Authority (ESA) Permit
- Screening of the project in accordance with the requirements of the *Canadian Environmental Assessment Act*, should any Federal approvals be required or should funding be provided by the Federal Government for this project.

10.0 References

(Atrel Engineering; Casteglenn Consultants, 2018) Transportation Impact Study (Draftplan of Subdivision). City of Clarence Rockland; Space Builders Ottawa Ltd.; Brigil Construction. December 21, 2018.

(Bowfin Environmental Consulting, 2022) Secondary Plan - Rockland West Background Review Summary. City of Clarence-Rockland. February 9, 2022.

(CIMA+, 2019) Expansion Lands Secondary Plan Master Servicing Study. City of Clarence-Rockland. July 2019.

(CIMA+, 2019) Expansion Lands Secondary Plan Transportation Impact Study. City of Clarence Rockland. June 2019.

(Clarence-Rockland, 2018) Clarence-Rockland Design Guidelines – Subdivisions and Site Plans. City of Clarence Rockland. June 2018.

(GHD, 2013) Roundabout Policy Report – 3.2 The Roundabout Screening Tool. City of Ottawa. May 14, 2013.

(Infrastructure and Planning Department City of Clarence-Rockland, 2019) Amendment Number 13 to the Official Plan of the Urban Area of the City of Clarence-Rockland. City of Clarence-Rockland, September 2019

(Institute of Transportation Engineers, 2020) 10th Edition of the Institute of Transportation Engineers Trip Generation Manual. ITE. February 1st, 2020

(Jacobs, 2022) Wastewater Master Plan Update. City of Clarence Rockland. May 17, 2022.

(Jacobs, 2023) City of Clarence-Rockland Water Master Plan Update. City of Clarence-Rockland. January 23, 2022.

(J.L. Richards, 2013) Official Plan of the Urban Area of the City of Clarence-Rockland. Planning Department City of Clarence-Rockland. November 19, 2013.

(LRL Associates, 2014) Site Servicing Plan, Proposed Commercial Development Rockland, Ontario. Les Immeubles R. Lalonde Inc

(MOE, 2008) Design Guidelines for Drinking-Water Systems. Ontario Ministry of the Environment. (2008)

(Region of Waterloo, 2009) Region of Waterloo Roundabout Traffic Flow Sheet. Region of Waterloo. March 12, 2009.

(Shore-Tanner & Associates, 2022) Commercial and Industrial Market Demand Study: Clarence-Rockland Ontario. City of Clarence-Rockland. February 4, 2022.

(Stantec, 2019) Multi-Modal Transportation Master Plan. The City of Clarence Rockland. June 2019.

(TAC, 2017) Canadian Roundabout Design Guide. Traffic Association of Canada. January 2017.

City of Clarence-Rockland Rockland West Secondary Plan – Phase 2 Report

This report has been prepared for the exclusive use of the City of Clarence-Rockland, for the stated purpose. Its discussions and conclusions are summary in nature and cannot be properly used, interpreted or extended to other purposes without a detailed understanding and discussions with the client as to its mandated purpose, scope and limitations. This report was prepared for the sole benefit and use of the City of Clarence-Rockland and may not be used or relied on by any other party without the express written consent of J.L. Richards & Associates Limited.

This report is copyright protected and may not be reproduced or used, other than by the City of Clarence-Rockland for the stated purpose, without the express written consent of J.L. Richards & Associates Limited.

J.L. RICHARDS & ASSOCIATES LIMITED

Prepared by:

Reviewed by:

Cailey Moxam Environmental Engineering Graduate

Matthew Morkem, P.Eng. Senior Environmental Engineer, Market Chief

Issued on: June 11, 2024

Phase 1 Report

JLR No.: 31097-000 Revision: 00

Prepared for:

CITY OF CLARENCE-ROCKLAND 1560 Laurier Street Parcel Deposit Box Rockland, ON K4K 1P7

Attn: Yves Rousselle, C.E.T. Manager of Supply & Processes yrouselle@clarence-rockland.com Prepared by:

J.L. RICHARDS & ASSOCIATES LIMITED 343 Preston Street, Tower II, Suite 1000 Ottawa, ON K1S 1N4 Tel: 613-728-3571

City of Clarence-Rockland

Schedule B Municipal Class Environmental Assessment for Rockland West Secondary Plan – Phase 1 Report

September 26, 2023

Value through service and commitment

Table of Contents

1.0	Introd	uction		1
	1.1	Backg	round	1
	1.2	Phase	1 Report Objectives	2
	1.3	SSA1	Overview	3
	1.4	Class	Environmental Assessment Process	4
	1.5	Evalua	tion and Selection Methodology	5
	1.6	Secon	darv Plan	5
		1.6.1	Visioning	5
2.0	Planni	ng Fran	nework	7
	2.1	Provin	cial Policy Statement	7
	2.2	United	Counties of Prescott and Russell Official Plan. July 2023	7
	2.3	Claren	ce- Rockland Official Plan	7
	2.4	Claren	ce-Rockland Zoning By-law 2016-10	7
	2.5	Multi-N	Nodal Transportation Master Plan	8
3.0	Marke	t and E	nvironmental Studies	9
	3.1	Shore-	Tanner & Associates Market Study	9
	3.2	Bowfin	Environmental Impact Study	10
4.0	Trans	portatio	n and Servicing Review	11
	4.1	Transp	portation	11
		4.1.1	Existing Area Road Network	11
		4.1.2	Existing Area Intersections	12
		4.1.3	Existing Active Transportation Network	13
		4.1.4	Existing Transit Network	15
		4.1.5	Existing Network Operations	17
	4.2	Munici	pal Servicing	21
		4.2.1	Existing Water System	21
			4.2.1.1 Background Information	21
			4.2.1.2 Water Inventory Review	21
			4.2.1.3 Upcoming Phase 2 Works	22
		4.2.2	Existing Sanitary System	22
			4.2.2.1 Background Information	22
			4.2.2.2 Sanitary Inventory Review	22
			4.2.2.3 Upcoming Phase 2 Works	23
		4.2.3	Existing Storm Water System	23
			4.2.3.1 Background Information	23
			4.2.3.2 Existing Drainage Patterns	24
			4.2.3.3 Existing Downstream Capacity and Allowable Peak Flows	25
			4.2.3.4 Water Quality Requirements	26
			4.2.3.5 Source Water Protection	26
5.0	Conce	epts		27
	5.1	Land L	Jse Designations	30
		5.1.1	Business Park	30
		5.1.2	Service Commercial	31
		5.1.3	Commercial Core Area	31
		5.1.4	Main Street	31
		5.1.5	Medium Density Residential	31
		5.1.6	High Density Residential	31

		5.1.7	Environmental and Open Space Overlay	31
		5.1.8	Future Development Overlay	32
	5.2	Evalua	ation of Proposed Concepts	32
		5.2.1	Option 1 Evaluation	34
		5.2.2	Option 2 Evaluation	34
		5.2.3	Option 3 Evaluation	34
		5.2.4	Option 4 Evaluation	35
6.0	Proble	m and	Opportunities	36
7.0	Conclu	usion ai	nd Next Steps	36

List of Figures

Figure 1: Map of the Secondary Plan Lands Boundaries	2
Figure 2: Current Land-use Designations of Secondary Plan Lands	3
Figure 3: County Road 17/Carmen Bergeron Intersection	12
Figure 4: Carmen Bergeron/Richelieu Intersection	12
Figure 5: Richelieu/Poupart Intersection	13
Figure 6: Poupart/Walmart Driveway Intersection	13
Figure 7: Existing Pedestrian Facilities (Sourced from the Clarence-Rockland MMTMP)	14
Figure 8: Existing Cycling Network (Sourced from the Clarence-Rockland MMTMP)	15
Figure 9: Existing CR Transpo Routes	17
Figure 10: Existing Vehicular Volumes AM(PM)	19
Figure 11: Rockland Secondary Plan Land-Use Concept Option 1	28
Figure 12: Rockland Secondary Plan Land-Use Concept Option 2	29
Figure 13: Rockland Secondary Plan Land-Use Concept Option 3	30

List of Tables

Table 1: CR Transpo Route Information	16
Table 2: LOS Criteria in Terms of Delay	
Table 3: LOS Criteria in Terms of Volume-to-Capacity	18
Table 4: SSA1 Intersection Operations – Existing Conditions	20
Table 5: Receiving Flow Rates	25
Table 6: Results for the Storm at Various Return Periods	25
Table 7: Statistics for Development Options 1-4	28
Table 8: Initial Screening of Alternatives	33

List of Appendices

Appendix A:	Shore-Tanner Market Study
-------------	---------------------------

- Appendix B: Bowfin Desktop Environmental Impact Study
- Appendix C: Turning Movement Counts
- Appendix D: Detailed Synchro Output Data
- Appendix E: Existing Watermain, Sanitary, and Storm Servicing

1.0 Introduction

1.1 Background

The Rockland West Secondary Plan area was identified for development during the 2015 United Counties Official Plan review. The review identified a localized shortage of industrial land supply in the City of Clarence-Rockland (the City) and resulted in a boundary expansion for the addition of approximately 41.1 ha of development land to the Rockland urban area.

Starting with a Notice of Commencement and landowners meeting, the City initiated the Rockland West Secondary Plan (RWSP) in December 2021 to establish a policy framework for the lands; to provide the basis for future development; and to ensure the efficient use of the land and infrastructure. Planning Act and Municipal Class Environmental Assessment (EA) processes are required to implement the Rockland West Secondary Plan.

As part of the Municipal Class EA process, meetings were held with landowners in the RWSP area on December 22, 2021 and April 7, 2022. These meetings provided landowners with an opportunity to provide input on the process and any findings from the supporting studies, which included:

- the market study by Shore-Tanner & Associates;
- environmental report by Bowfin Environmental Consulting; and
- the existing conditions report as part of Phase 1 of the EA process.

On April 20th 2022, staff presented the findings of the various studies and recommended a list of land uses for the RWSP lands.

Consultation with the UCPR during the drafting of their new OP informed a boundary change for the RWSP lands on July 8th, 2023. The changes resulted in a boundary limit that acknowledges the existing lot fabric, the bottom of the ridge, wooded areas, and the existing and continued use of parcels for farming. The boundary change added 13.5 hectares of land for a total land area of approximately 54.6 ha. Figure 1 shows the previous RWSP lands boundary outlined in black, and the current boundary outlined in dashed-red.

Figure 1: Map of the Secondary Plan Lands Boundaries

The RWSP area is currently designated "Urban Policy Area" in the United Counties of Prescott and Russell (UCPR) Official Plan and "Special Study Area 1" in the Official Plan of the Urban Area of the City of Clarence-Rockland. The lands are currently zoned "Special Study Area 1 (SSA1)" pursuant to Zoning By-law 2016-10. For the remainder of the Phase 1 report this area will be referred to as SSA1.

The RWSP is a new Secondary Plan that will be added to Section 8 of the Official Plan of the Urban Area for the City of Clarence-Rockland. The RWSP will provide area-specific policy direction to guide development within the RWSP area over the next 20+ years and ensures that future growth occurs in an efficient, orderly, and sustainable manner.

1.2 Phase 1 Report Objectives

The Phase 1 Report was prepared to summarize the findings from the first phase of the Master Plan process and to use as a basis for the identification and evaluation of alternative options during Phase 2.

Specifically, the Phase 1 Report has been prepared to address the following key aspects:

- To provide an overview of the Municipal Class EA process and the specific Master Plan process being followed for the Rockland West Secondary Plan;
- To outline the land use planning context to support the identification and assessment of the alternative solutions;
- To outline legislative framework related to transportation and servicing requirements;

- To establish the existing watermains, sanitary sewers, and stormwater infrastructure in the vicinity of the SSA1;
- To analyze transportation and transit networks in the SSA1 to support the development of alternative solutions;
- To complete an initial evaluation of alternative solutions and short list two to be carried forward for detailed evaluation in Phase 2;
- To develop a Problem and Opportunity Statement; and
- To confirm Phase 2 methodology and next steps.

1.3 SSA1 Overview

As shown in Figure 1, the SSA1 comprises a single irregularly shaped parcel of land. The land is situated between County Road No. 17 to the north, Part of Lots 33 and 34, Concession 1 to the west, the proposed major collector road to the south, and a portion of Part of Lot 32, Concession 1 to the east. Currently, the lands within the SSA1 are used primarily for agricultural uses and several dwellings are present along de la Baie Road on the south side of County Road No. 17.

Figure 2 depicts the current land-use designation for the Secondary Plan lands and the surrounding area. The RWSP land is currently designated as a Special Study Area, with designated service commercial land on the eastern boundary of the area.

Figure 2: Current Land-use Designations of Secondary Plan Lands

1.4 Class Environmental Assessment Process

The Ontario Environmental Assessment Act (EA Act), enacted in 1976, formally recognizes the Municipal Class Environmental Assessment (Class EA) process and outlines requirements for EA approval. The Municipal Class EA applies to municipal infrastructure projects, including roads, water, and wastewater projects. To ensure that environmental impacts and effects are considered for each project per the EA Act, proponents are required to generally follow the planning process set out in the Municipal Class EA Guidelines, prepared by the Municipal Engineers Association (MEA) (2015) (www.municipalclassea.ca). The Class EA process includes the following stages:

- Phase 1: Problem and opportunity identification.
- Phase 2: Identification and evaluation of alternative solutions to determine a preferred solution to the problem or opportunity. This Phase also compiles an environmental 'inventory', identifies impacts, and outlines mitigation measures.
- Phase 3: Identification and evaluation of design concepts for the preferred solution. A detailed evaluation of the environmental effects and mitigation measures will be addressed during this project Phase.
- Phase 4: Complete and place Environmental Study Report on Public Record. The Report will document Phases 1 through 3 and summarize the consultation undertaken throughout the planning process and is considered valid for a 10 year period.
- Phase 5: Implementation and monitoring.

Since projects may vary in their environmental impact, they are classified in terms of the following schedules:

- Schedule 'A' projects usually have minimal environmental effects and generally include normal or emergency operational and maintenance activities. These projects are pre-approved under the Class EA planning process. Projects within this category are subject to Phases 1 and 5.
- Schedule 'A+' projects are pre-approved projects similar to Schedule 'A', however, the public is to be advised prior to project implementation.
- Schedule 'B' projects have potential for some adverse environmental impacts and, therefore, the proponent is required to proceed through a screening process, including consultation with affected parties. Generally, these projects include improvements and minor expansions to existing facilities. Projects within this category are subject to Phases 1, 2 and 5.
- Schedule 'C' projects have potential for greater environmental impacts and are subject to all five Class EA Phases. Generally, these projects include the construction of new facilities and major expansions to existing facilities.

1.5 Evaluation and Selection Methodology

To facilitate the evaluation and selection of the preferred solution during Phase 2, a transparent and logical three-part assessment process was established. This process includes:

- 1. Initial screening of alternative solutions;
- 2. Detailed evaluation of screened alternatives; and
- 3. Selection of a preferred alternative.

The first evaluation stage considers the overall feasibility of the potential solutions and identifies those alternatives that fully address the problem statement. This was completed as part of Phase 1. This step ensures that unrealistic alternatives are not carried forward to detailed evaluation. Based on the initial screening, a detailed assessment of the short-listed alternatives will be conducted. Evaluation criteria were developed based on a review of the background information, experience on similar assessments, and in consultation with City staff. The initial evaluation was conducted using criterion in the following four major criteria categories:

- Natural Environment and Archaeology
- Social and Community Well Being
- Engineering and Technical Considerations
- Financial Impacts

In Phase 2 a final preferred solution will be selected and presented to stakeholders to solicit input before finalizing.

1.6 Secondary Plan

The Rockland West Secondary Plan (RWSP) is a land use planning policy tool that will be adopted by the City of Clarence-Rockland's Council under authority of Section 16 of the Planning Act. The purpose of this Secondary Plan is to provide area-specific policy direction to guide development within these lands over the next 20+ years.

The RWSP area was identified for development during the 2015 United Counties of Prescott and Russell (UCPR) Official Plan. The review identified a localized shortage of industrial land supply in the City of Clarence-Rockland and to address the shortage, added approximately 54.6 ha of land to the Rockland Urban Policy Area. Following the addition of the lands to the Urban Policy Area designation, the City of Clarence-Rockland designated and rezoned these lands to "Special Study Area (SSA1)".

The intent of the Special Study Area designation and zone is to allow for further study to support the development of a Secondary Plan to provide land use policies and direction. In the interim, existing uses are permitted to continue, but no new uses are permitted.

1.6.1 Visioning

The RWSP is a logical destination to accommodate economic growth in the City of Clarence-Rockland over the next 20+ years while protecting and enhancing the natural character and established cultural forests that define this area. While residential development is flourishing throughout the City of Clarence-Rockland, commercial and industrial development has lagged.

The SSA1 location is prime for business park, commercial, light industrial, and tourism uses that may not be compatible with the City's existing residential communities or appropriate for the rural context. At the western edge of the City's urban boundary, the SSA1 lands are a logical gateway to the urban area where uses should be geared to visitors to the City. The lands must be planned and designed carefully to reinforce the established identity of the City as a whole.

The intent of the RWSP is to ensure all future development in Rockland West achieves a unified vision of a clean business park that attracts the highest order of employment uses and establishes a remarkable gateway to the City.

2.0 Planning Framework

2.1 Provincial Policy Statement

The Provincial Policy Statement (PPS) provides policy direction on matters of provincial interest related to land use planning and development. Municipalities are required to "be consistent with" the PPS with respect to any planning decisions. One of the directions includes long-term prosperity:

1.7.1 Long-term economic prosperity should be supported by:

- a) promoting opportunities for economic development and community investment-readiness;
- c) optimizing the long-term availability and use of land, resources, infrastructure and public service facilities;
- d) maintaining and, where possible, enhancing the vitality and viability of downtowns and mainstreets;
- e) encouraging a sense of place, by promoting well-designed built form and cultural planning, and by conserving features that help define character, including built heritage resources and cultural heritage landscapes;
- g) providing for an efficient, cost-effective, reliable multimodal transportation system that is integrated with adjacent systems and those of other jurisdictions, and is appropriate to address projected needs to support the movement of goods and people;
- h) providing opportunities for sustainable tourism development;
- *j)* promoting energy conservation and providing opportunities for increased energy supply;

2.2 United Counties of Prescott and Russell Official Plan, July 2023

The Urban Policy Area designation of the UCPR Official Plan applies to cities, towns, and villages with populations of 1,000 or more and which have been developed primarily on the basis of municipal water and sewer systems. The Urban Policy Area is intended to accommodate a significant portion of future employment growth in the United Counties.

2.3 Clarence- Rockland Official Plan

The City of Rockland Official Plan directs the future development of the Urban Area of the City of Clarence-Rockland to 2033. Through the RWSP, a section of the lands will be brought into the urban boundary and the Secondary Plan will be incorporated into the Official Plan.

One of the goals of the Official Plan of the Urban Area of Clarence-Rockland is to proactively encourage economic growth and development. Through the development of the City's Economic Development Strategy, it was identified that there is a lack of commercial and industrial development found in the City.

2.4 Clarence-Rockland Zoning By-law 2016-10

The RWSP land is zoned Special Study Area (SSA) Zone. The intent of the zone is to preserve land for development or redevelopment in accordance with the results and recommendations of a Secondary Plan. Currently, the only permitted uses in the SSA Zone are those which were in existence on the date of passing of the By-law and any other uses may be authorized by Committee of Adjustment or City Council under the provision of the Planning Act.

2.5 Multi-Modal Transportation Master Plan

This Multi-Modal Transportation Master Plan 2019 (MTMP) is a long-range strategic plan for the entirety of Clarence-Rockland that identifies transportation infrastructure requirements to address existing challenges and support growth, along with policies to guide transportation and land use decisions.

The MTMP has identified the roadway extension west of Poupart Road to connect with County Road 17. The alignment and design of this extension will be determined through this secondary plan. The MTMP also indicates that this road extension should include a continuation of the planned multi-use and pedestrian pathways on Poupart Road. Just outside the RWSP area, the MTMP also identifies the four way stop intersections at Richelieu Street at Carmen Bergeron Street and at Poupart Road as requiring updates to accommodate additional traffic by 2031.

3.0 Market and Environmental Studies

3.1 Shore-Tanner & Associates Market Study

To determine the desired land uses for the SSA1, the RFP for the RWSP required a Market Study to be completed by Shore-Tanner & Associates. The purpose of this Market Study was to determine the scope of market demand for retail, office and industrial businesses for the subject lands. The Final Market Study is provided in Appendix A.

The major findings of the study include:

- The effects of land prices for industrial lands in Ottawa will only direct businesses to more affordable land options in nearby urban centres, such as the City of Clarence-Rockland, where urban growth will need to be supported by a variety of industries, especially knowledge-based and innovative businesses.
- Industrial businesses, which are less compatible with sensitive land use and rely on efficient business logistics and transport, are most suitable for the subject lands due to its location at the edge (within) the urban area and its proximity to County Road 17.
- Many Clarence-Rockland residents still work in Ottawa, due to the range of employment opportunities found there. Subsequently, Clarence-Rockland residents spend a lot of money at Ottawa retailers. By creating more land for employment use (e.g. business park, office, innovation), residents will be encouraged to work and spend in Clarence-Rockland. The addition of "employment uses" will also create more demand for additional retail uses, which is already on the rise as per Shore-Tanner's Market Study. These uses are normally "considered" complementary to business park uses and will not complete with the uses found in the downtown core area.
- The City of Clarence-Rockland is under-stored for retail and service businesses.

Based on the findings above, Shore-Tanner & Associates recommended the following land uses for inclusion in the SSA1 lands, in the order of priority:

- Industrial/Business Park
- Office Buildings
- Shopping (Retail/ Commercial)

Shore-Tanner & Associates recommend a mix of modern and traditional industries:

- Modern knowledge-based industries: Information Technology (IT), life sciences, professional services,
- Land Intensive Light Industrial uses: storage, show rooms, sales display, and storage yards (e.g. construction-related industries).
- Complementary service commercial uses, such as retail with a focus on locally oriented food, convenience and service businesses, as well as recreation, entertainment and hospitality.

Since the studies reflects a 10 year projection / horizon, Shore-Tanner & Associates recommends 100, 000 sq.ft of new office space and 150, 000 sq.ft of retail (shopping centre) space. The lands are sufficient in size to accommodate both land intensive light industrial use and the amount of office and retail space proposed.

In tandem with the market study, the environmental study, public consultation, and meetings with the landowners determined that the SSA1 lands are well suited for commercial, retail, and light industrial uses due to their proximity to Ottawa and location along County Road No. 17. The development of these lands for the recommended land uses conforms to policy and aligns with the strategic vision for the City of Clarence-Rockland.

3.2 Bowfin Environmental Impact Study

To determine the desired land uses, on-site environmental factors must also be considered. Bowfin Environmental Consulting Inc. (now Cima +) has done a preliminary desktop review of the natural features of the SSA1 (see Appendix B) and has concluded that none of the following natural heritage features are present on the subject lands:

- Provincially significant wetlands
- Unevaluated wetlands
- Coastal wetlands
- Valleylands
- Identified significant wildlife habitat
- Significant woodlands
- Areas of National and Scientific Interest

There are watercourse features found on-site, and subsequently Fish Habitat, which is being recommended to be protected through the determination of an appropriate development setback (between 15-30 metres) through the Secondary Plan process and landscaping interventions that compliment both fish habitat and provide safe passage for other wildlife. There is therefore a potential north-south natural corridor in the heart of the subject lands.

There are also two (2) large cultural thickets / forests found on the subject lands which are opportunities to create a habitat for Endangered or Threatened species, such as the Butternut tree. A protected buffer for these plantings would be required.

Bowfin Environmental Consulting Inc. offers three (3) opportunities for enhancement and recommends considering combining these opportunity areas with more of an Urban Park type landscape and at least one with predominately native species and communities.

While more study is required through the Secondary Plan, we would recommend that it is appropriate to consider a land use designation that will reflect the preliminary findings from Bowfin Environmental Consulting Inc.

In the framework of the City's OP, an "Environmental Protection Area" is a land use designation that can be used to protect fish habitat and other natural heritage features.

Since Bowfin has offered three (3) enhancement opportunities and suggests integration with an Urban Park type landscape, we do not anticipate that all features and associated buffers will be designated "environmental protection area". Some of this land could be designated for "Parks and Open Space" and used to support the road hierarchy. The distinction between protected land and open space will be further studied and developed through the development of theRWSP.

4.0 Transportation and Servicing Review

4.1 Transportation

This section provides a review of existing roadways, intersections, and transit and transportation networks in the SSA1 and describes a capacity analysis that was undertaken to quantify intersection performance operations in the area.

4.1.1 Existing Area Road Network

The roads within the greater RWSP lands are under a combination of jurisdictions, including the Counties of Prescott and Russell, and the City of Clarence-Rockland. The following is a summary of the roads within and adjacent to the SSA1, and the role each of these roadways play.

County Road 17 is a two-lane arterial roadway (i.e., one travel lane per direction) along the subject site's frontage. It extends between Canaan Road in the west where it continues westerly as HWY 174 into the City of Ottawa, and towards the east, it extends to Gourley Road, where it continues as HWY 417, just east of Hawkesbury. Within the vicinity of the subject site, the posted speed limit is 70 km/h and on-street parking regulations are unposted.

Carmen Bergeron Street is a four-lane collector roadway (i.e., two travel lanes per direction), it extends between County Road 17 in the north and terminates at the Walmart parking lot in the south. Within the vicinity of the subject site the speed limit is unposted and therefore, is assumed to be 50 km/h. On-street parking regulations are unposted.

Richelieu Street is a two-lane local roadway (i.e., one travel lane per direction), it extends between De La Baie Road in the northwest and Cecile Crescent in the east. Within the vicinity of the subject site the speed limit is unposted and therefore, is assumed to be 50 km/h. On-street parking regulations are unposted.

Poupart Road is a two-lane collector roadway (i.e., one travel lane per direction), it extends approximately 220 m north of Richelieu Street where it continues as Laurier Street and St. Jean Street in the east where it continues as St. Jean Street. Within the vicinity of the subject site the posted speed limit is 50 km/h and on-street parking regulations are unposted.

4.1.2 Existing Area Intersections

County Road 17/Carmen Bergeron

The County Road 17/Carmen Bergeron intersection is a signalized three-legged intersection. The northbound approach (Carmen Bergeron Street) consists of one leftturn lane and one right-turn lane. The eastbound approach (County Road 17) consists of one left-turn lane and one through lane. The westbound approach (County Road 17) consists of one through lane and one rightturn lane. Crosswalks with pedestrian actuated signals are provided across the south and east legs of the intersection only.

All movements are permitted at this location.

Figure 3: County Road 17/Carmen Bergeron Intersection

Carmen Bergeron/Richelieu

The Carmen Bergeron/Richelieu intersection is an unsignalized, four-legged intersection with a All-Way STOP control. The northbound approach (Carmen Bergeron Street) consists of one shared through/left-turn lane and one shared through right-turn lane. The southbound approach (Carmen Bergeron Street) consists of one shared through/left-turn lane and one rightturn lane. The east and westbound approaches (Richelieu Street) each consist of one left-turn lane and one shared through/right-turn lane. Crosswalks are provided for all directions.

All movements are permitted at this location.

Figure 4: Carmen Bergeron/Richelieu Intersection

Richelieu/Poupart

The Richelieu/Poupart intersection is an unsignalized, four-legged intersection with All-Way STOP control. The north and southbound approaches (Poupart Road) consist of a single accommodates lane that all possible The movements. westbound approach (Richelieu Street) consists of a single lane that accommodates all possible movements. The eastbound approach (Richelieu Street) consists of one left-turn lane and one through/right-turn No lane. pedestrian crosswalks are provided at the intersection.

All movements are permitted at this location.

Poupart/Walmart Driveway

The Poupart/Walmart Driveway intersection is an unsignalized, three-legged intersection with STOP control on the minor approach only (Walmart Driveway). The north and southbound approaches (Poupart Road) each consist of a single lane that accommodates all possible movements. No pedestrian crosswalks are provided at the intersection.

All movements are permitted at this location.

Figure 5: Richelieu/Poupart Intersection

Figure 6: Poupart/Walmart Driveway Intersection

4.1.3 Existing Active Transportation Network

Active transportation facilities were reviewed to gain an understanding of existing pedestrian and cycling facilities. The City acknowledges that protecting and expanding the existing pedestrian and bicycle network in the City is essential to creating quality of place.

The network for active modes within the vicinity of the subject development lands are fairly well developed. Sidewalks are provided along both sides of Richelieu Street between Carmen Bergeron Street and Poupart Road. Along Carmen Bergeron Street sidewalks are provided on the east side of the road only and on Poupart Road, sidewalks are provided on the west side of the road only.

With respect to cyclists, cycling facilities are fairly minimal. As depicted in Section 2.2.4 of the City of Clarence-Rockland Multi-Modal Transportation Master Plan (MMTMP), there are currently no

segregated cycling facilities (i.e., bike lanes, paved shoulders etc.); cyclists are to ride on the road and share with motorists within the vicinity of SSA1.

The existing pedestrian/cycling network within the vicinity of SSA1, and how they connect to the greater network are depicted in Figure 7 and Figure 8, sourced from the Clarence-Rockland Multi-Modal Transportation Master Plan.

Figure 7: Existing Pedestrian Facilities (Sourced from the Clarence-Rockland MMTMP)

Figure 8: Existing Cycling Network (Sourced from the Clarence-Rockland MMTMP)

4.1.4 Existing Transit Network

Clarence-Rockland Transport (CR Transpo) operates three bus routes (route 530, 530A and 535) which connect the City of Clarence-Rockland and downtown Ottawa, with one stop in Gatineau. Route 530 directly serves the SSA1 travelling along Laurier Street and Docteur Corbeil Boulevard (to/from Clarence Creek) to Highway 174, while route 535 provides service to/from Bourget along Russell Road towards Highway 417. It should be noted that neither route provides internal connections between townships as these transit services are focused on external commuter travel. The following Table 1 provides additional information with respect to the CR Transpo routes.

Route	Origin/Destination	Direction	Peak Hour Headway
530	Clarence Creek (Laurier)	Westbound/Inbound (AM)	Mon-Fri
	↔ Ottawa	Eastbound/Outbound (PM)	Peak periods only
530A	Clarence Creek (Docteur	Westbound/Inbound (AM)	Mon-Fri
	Corbeil) ↔ Ottawa	Eastbound/Outbound (PM)	Peak Periods Only
535	St-Pascal-Baylon ↔ Ottawa	Westbound/Inbound (AM) Eastbound/Outbound (PM)	Mon-Fri Peak Periods Only

Table 1: CR Transpo Route Information

It should be noted that as indicated on the Leduc Bus Lines Ltd website, route 535 is currently suspended until further notice and route 530 is currently operating on a 'Temporary Emergency Schedule' which only travels on Laurier Street.

Within the City of Clarence-Rockland, route 530 and 530A are understood to be a commuter transit route operating inbound to Ottawa in the morning and outbound to Clarence Rockland in the evening. On average these routes run between 8 and 11 times per day. In the recent MMTMP dated June 2019 prepared by Stantec it should be noted that that both routes have seen a decrease in transit ridership since 2015 resulting in 12% decrease. Additionally, only 25% of the City's urban area is within the 400m radius of transit stops; however, several stops are located at Park-n-Rides to provide an option for rural residents that do not live within proximity to the bus stops.

The following Figure 9 depicts existing CR Transpo Routes with stops and walking buffers as sourced from the City of Clarence-Rockland MMTMP.

Figure 9: Existing CR Transpo Routes

4.1.5 Existing Network Operations

Using the intersection capacity analysis software Synchro (v11), a capacity analysis was undertaken to quantify intersection performance operations at signalized and unsignalized intersections in terms of vehicle delay (seconds), 95th percentile queues (meters), a volume-to-capacity ratio (V/C ratio) and a corresponding Auto Level of Service (LOS or Auto-LOS) as outlined in the Highway Capacity Manual (HCM). It should be noted that the overall performance of a signalized intersection is calculated as a weighted V/C ratio and assigned a corresponding Auto-LOS, and individual vehicular movements are assigned a LOS based on their respective V/C ratio. The overall performance of an unsignalized intersection is an Auto-LOS output from Synchro, which is based on an Intersection Capacity Utilization (ICU) method, and each movement is assigned an LOS based on delay.

The following Table 2 outlines the LOS criteria in terms of delay and Table 3 outlines the LOS criteria in terms of a V/C.

LOS	Control Delay Per Vehicle (s/veh)	Interpretation
А	≤ 10	Excellent
В	10-20	Very Good
С	20-35	Good
D	35-55	Fair
Е	55-80	Poor
F	> 80	Unsatisfactory

Table 2: LOS Criteria in Terms of Delay

Table 3: LOS Criteria in Terms of Volume-to-Capacity

LOS	Control Delay Per Vehicle (s/veh)	Interpretation
А	≤ 0.60	Excellent
В	0.61-0.70	Very Good
С	0.71-0.80	Good
D	0.81-0.90	Fair
E	0.91-1.00	Poor
F	> 1.00	Unsatisfactory

LOS is a qualitative measure of operational performance based on control delay, and a v/c ratio is the ration between traffic volume and the theoretical capacity of an intersection or movement, and a v/c ratio of 1.00 indicates an at capacity condition. In terms of 95th percentile queues, it is a queue length that has a 5% probability of being exceeded during the analysis period (e.g., during peak hours).

For the purpose of this assessment, the following SSA1 intersections have been identified for intersection capacity analysis:

- County Road 17/Carmen Bergeron
- Richelieu/Carmen Bergeron
- Richelieu/Poupart
- Poupart/Walmart Driveway

The following Figure 10 depicts the observed weekday morning and afternoon peak hour vehicular movements at SSA1 intersections. Detailed turning movement counts (TMCs) were collected between June 15th and June 23rd, 2021, and are provided as Appendix C.

It should be noted that at the time of data collection and with respect to Ontario's three-staged COVID-19 reopening plan, the province had just moved to the first stage prior to field observations. While the province still encouraged working from home as much as possible, the first stage allowed for non-essential retail operations to open. Therefore, it should be understood that the TMCs conducted between June 15th and June 23rd, 2021, do not represent a sample of

typical conditions; however, the conditions observed on these days were as close to typical as possible, given the ongoing impacts on travel behaviour related to the COVID-19 pandemic.

Figure 10: Existing Vehicular Volumes AM(PM)

The following Table 4 summarizes existing conditions at SSA1 intersections, in the absence of any development. The objective of this analysis is to determine if network improvements are, or will be required to support background traffic, or if projected future demand should be adjusted (e.g., once an auto network becomes saturated, a modal shift to active or transit modes can be expected). Detailed Synchro output data for existing conditions is provided in Appendix D.

	Lanes		AM Pea	ak Hour		PM Peak Hour			
Dir.		v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
	Carmen Bergeron/County Road 17- Actuated-Uncoordinated Signal								
EBT	1 T	0.43	12.3	А	68	1.16	105.4	F	#344.8
EBR	1 R	0.04	4.6	А	5	0.24	4.5	А	17
WBL	1 L	0.09	4.9	А	5	0.52	19.7	А	23
WBT	1 T	0.64	10.2	В	86	0.55	7.0	А	77
NBL	1 L	0.26	21.6	А	23	0.46	44.8	А	29
NBR	1 R	0.09	9.6	А	6	0.45	13.1	А	15
0	verall	0.54	11.3	Α	-	1.06	56.1	F	-
		Ca	rmen Ber	geron/Ri	chelieu - I	Unsignali	zed		
EBL	1 L	0.03	7.3	А	0	0.02	8.1	А	0
EB	1 T/R	0.01	6.7	А	0	0.04	7.7	А	0
WBL	1 L	0.00	0.1	А	0	0.02	8.0	А	0
WB	1 T/R	0.11	6.6	А	0	0.21	8.1	А	0
NBL	1 L	0.00	0.0	А	0	0.00	7.7	А	0
NB	1 T/R	0.04	6.7	А	0	0.10	7.6	А	0
SB	1 T/L	0.08	7.3	А	0	0.44	11.4	В	0
SBR	1 R	0.02	6.0	А	0	0.03	6.4	А	0
Overall		0.24	6.8	Α	-	0.39	9.6	Α	-
			Poupa	rt/Richeli	eu - Unsig	gnalized			
EBL	1 L	0.05	7.6	А	0	0.29	10.5	В	0
EB	1 T/R	0.03	6.5	А	0	0.22	8.5	А	0
WB	1 L/T/R	0.06	7.6	А	0	0.10	9.1	А	0
NB	1 L/T/R	0.12	8.0	А	0	0.25	10.0	А	0
SB	1 L/T/R	0.09	7.4	А	0	0.32	10.2	В	0
0	verall	0.28	7.6	Α	-	0.45	9.8	Α	-
			Poupa	rt/Walma	rt - Unsig	nalized			
EB	L/R	0.02	8.7	А	0	0.12	11.4	В	3
NB	1 T/L	0.01	6.4	А	0	0.04	2.0	А	1
SB	1 T/R	0.04	0.0	А	0	0.13	0.0	А	0
Overall		0.18	2.6	Α	-	0.39	2.5	Α	-

Table 4: SSA1 Intersection Operations – Existing Conditions

As shown in Table 4, SSA1 intersections are currently operating with an excellent overall LOS 'A' during weekday morning and afternoon peak hours, with the exception of the Carmen Bergeron/County Road 17 intersection, which is currently operating over capacity with an overall LOS 'F' during the afternoon peak hour. With regard to 'critical' movements, they are operating with an LOS 'B' or better during both peak hours, with the exception of the eastbound through movement at the Carmen Bergeron/County Road 17 intersection, which is operating over capacity with an LOS 'B' during the afternoon peak hours.

In terms of 95th percentile queues, sufficient vehicle storage is provided, such that vehicle queues do not spill or block lanes or intersections, with the exception of the eastbound through movement at the Carmen Bergeron/County Road 17 intersection, which is operating with long 95th percentile queues and delays.

Possible measures to improve network performance will be discussed as part of subsequent projected conditions analysis.

4.2 Municipal Servicing

This section provides a review of existing services (watermain and sanitary) in the vicinity of the SSA1 as well as an assessment of the existing drainage condition based on site characteristics and existing outlet points.

4.2.1 Existing Water System

4.2.1.1 Background Information

A review of background information was carried out to identify watermains located in the vicinity of the SSA1 that could provide both domestic supply and fire flow protection. The following information was reviewed:

- The report entitled "City of Clarence-Rockland Water Master Plan Update", prepared by Jacobs, dated January 23, 2023.
- The report entitled "TM-2 Future Growth and Water Use Estimates FINAL", prepared by Jacobs dated August 18, 2021.
- Several "as-constructed" drawings from recent developments along the eastern boundary of the SSA1; and
- City of Clarence-Rockland GIS database of their linear infrastructure.

4.2.1.2 Water Inventory Review

Based on the review of the Water Master Plan Update, the SSA1 is next to the City's Pressure Zone 1 (PZ 1) which receives its potable water from the Rockland Water Treatment Plant (WTP).

The GIS database was used to prepare a figure that depicts watermains in the vicinity of the SSA1 limits, this is provided in Appendix E. The following watermains are in proximity of the SSA1:

- An existing 150mm diameter watermain (unknown material) is located along De La Baie Road within the municipal ROW. As shown in Appendix E, this watermain spans midway along the northern frontage of the SSA1.
- An existing 300 mm diameter watermain (PVC) along Richelieu Street, which was installed to supply the SmartCentres development. The watermain abuts the eastern boundary of the SSA1 in the northeast corner.
- An existing privately owned 150 mm diameter watermain (PVC) constructed within the Rona development (within the lumber yard). Based on the information received, this watermain and hydrant is fully located within private property. Thus, an extension from this privately owned

watermain would not be recommended as it would require the execution of a maintenance agreement and easement connection.

4.2.1.3 Upcoming Phase 2 Works

Under Phase 2 of this Study, domestic water demands will be calculated under both maximum day and peak hour in accordance with the theoretical parameters outlined in the Water Master Plan Update and/or in the Clarence-Rockland Water Design Guidelines.

In terms of fire protection, the fire flow requirement was identified in Jacob's Water Master Plan Update for PZ1. If the SSA1 is found to be supplied by PZ 1, the fire flow target was identified by Jacob's as 283 L/s. It should be noted that the supply of 283 L/s by two (2) local 150 mm diameter watermains would generate a head loss for each watermain equivalent to 9.2 psi per 1000 linear meter. Based on this significant head loss, it is likely that system upgrades will be required to support the urbanization of the SSA1.

Based on the calculated demands and fire flow target noted above, boundary conditions (BCs) will be requested from the City at the connection points with the existing system or under a servicing upgrade. From the BCs received, internal functional servicing will be developed and evaluated against regulatory requirements.

4.2.2 Existing Sanitary System

4.2.2.1 Background Information

A review of background information was carried out to identify sanitary sewers and/or forcemains located in the vicinity of the SSA1 that could serve as an outlet for the Study's Area wastewater flows. The following information was reviewed:

- The report entitled "Wastewater Master Plan Update, TM-C2 Wastewater Collection System Hydraulic Analysis Report – Final", Jacobs, dated May 17, 2022
- Servicing Plan (SW-S1) Commercial Development Building A (1060), prepared by CounterPoint Engineering Inc, dated May 2007, marked "As-Built Drawings", dated January 2008
- Site Servicing & Stormwater Management Report for Site Plan Control Application Proposed Commercial Development RONA -Rockland SmartCentres, prepared by LRL Associates, dated October 2014
- Proposed Commercial Development Site Servicing Plan C.401, prepared by LRL Associates Ltd, dated May 2014; and
- City of Clarence-Rockland GIS database of their linear infrastructure.

4.2.2.2 Sanitary Inventory Review

Based on the review of the Wastewater Master Plan Update, the SSA1 is next to a series of local sanitary sewers as depicted in Appendix E. The following sanitary sewers are in proximity of the SSA1:

- An existing 250mm diameter sanitary sewer is located along Richelieu Street, terminating immediately to the west of the Poupart Road intersection. This sewer flows in an easterly direction towards Descôtes Circle.
- Two (2) existing sanitary pump stations and forcemains are located at 2780 Chamberland Street and at 1191 St. Jacques Street.
- An existing 250mm sewer is located to the east of Poupart Road and flows into the sewershed east of the SmartCentres development. At that point, the captured flows proceed in an easternly direction towards the existing pump station on St. Jacques Street. Based on the City of Rockland GIS database, this is the current outlet for the SmartCentres development and Rona located to the east of the SSA1.
- Existing sanitary sewers within commercial developments (Rona and Walmart). Given that these sanitary sewers are privately owned, they would not serve as a dedicated outlet to the SSA1.

4.2.2.3 Upcoming Phase 2 Works

Under Phase 2 of this Study, peak wastewater flows will be calculated in accordance with the theoretical parameters and peaking factors outlined in the Wastewater Master Plan Update and/or in the Clarence-Rockland Sewer Design Guidelines. At such time, internal functional servicing will be developed and evaluated against regulatory requirements.

As identified in the Wastewater Master Plan Update, once peak wastewater flows have been calculated, the capacity of the existing 250mm diameter sanitary outlet on Richelieu Street flowing east across Poupart Road will be evaluated. This capacity analysis will determine the infrastructure needs, either replacing existing sewers, or constructing new sewers to accommodate the future wastewater flows from the SSA1.

4.2.3 Existing Storm Water System

4.2.3.1 Background Information

A review of background information was carried out to identify stormwater management and drainage infrastructure located in the vicinity of the SSA1 that could provide outlets for the proposed stormwater management systems. The following information was reviewed:

- Servicing Plan (SW-S1) Commercial Development Building A (1060), prepared by CounterPoint Engineering Inc, dated May 2007, marked "As-Built Drawings", dated January 2008
- Servicing Record Drawing (SW-S1) Commercial Development Building A (1060), prepared by CounterPoint Engineering Inc, dated January 2010
- Site Servicing & Stormwater Management Report for Site Plan Control Application Proposed Commercial Development RONA - Rockland SmartCentres, prepared by LRL Associates, dated October 2014
- Proposed Commercial Development Grading and Drainage Plan C.301, prepared by LRL Associates Ltd, dated May 2014

- Proposed Commercial Development Site Servicing Plan C.401, prepared by LRL Associates Ltd, dated May 2014
- Serviceability Study, Stormwater Management Storm Sewer, Sanitary Sewer and Watermain Project No.: 150403 Poupart Subdivision, prepared by Atrel Engineering, dated June 2017

4.2.3.2 Existing Drainage Patterns

The SSA1 is currently undeveloped and does not include any storm sewers. All runoff is overland and conveyed via sheet flow or drainage ditches to downstream receivers. A digital elevation model (DEM) surface for the site was sourced from the Natural Resources Canada Ottawa River 2019-20 collection project. The DEM was run through the PCSWMM Watershed Delineation Tool with culverts burnt-in to assess drainage patterns for the site and develop catchment areas.

Four downstream receivers have been identified for the lands.

- SmartCentres Rockland, Walmart Site at the turning circle behind the Walmart there are two ditch inlet structures which capture upstream flows. The October 2014 Site Servicing and Stormwater Management Report for the Rockland SmartCentres identified an upstream drainage area of 3.6 ha to these inlets. The captured flow is conveyed in the storm sewer system through the site to discharge into the existing stormwater management facility at the intersection of De La Baie Road and Poupart Road.
- SmartCentres Rockland, Rona Site at the southwest corner of the Rona development there is a constructed ditch which collects flows from the upstream undeveloped area to the south. The October 2014 Site Servicing and Stormwater Management Report for the Rockland SmartCentres identified an upstream drainage area of 10ha to this ditch. The captured flow is conveyed in the storm sewer system through the site to discharge into the existing stormwater management facility at the intersection of De La Baie Road and Poupart Road.
- De La Baie Road Drainage System part of the undeveloped site appears to drain via overland sheet flow through the Bergeron Greenhouses Garden Centre and onto De La Baie Road. The drainage area developed from the DEM is around 17 ha. No information was available on any stormwater management infrastructure through the site. A small catchment, 6.5 ha, to the east of this is collected via a drainage ditch which ends at the turning circle on De La Baie Road and enters via a culvert into the drainage system for De La Baie Road.
- County Road 17 Culvert the largest drainage area, covering most of the site, is conveyed via overland sheet flow and ditch systems to the existing culvert under County Road 17. The upstream drainage area to the culvert is 240 ha and extents south to around 200m north of Baseline Road. No information was able to be sourced on the culvert.

The drainage areas and receiving points are shown in Appendix E.

4.2.3.3 Existing Downstream Capacity and Allowable Peak Flows

SmartCentres Rockland

The two (2) receiving points for the undeveloped flow from the site are defined in the Site Servicing & Stormwater Management Report, LRL Associates October 2014. The design sheet specifies receiving flow rates as shown in Table 5 below.

Inlet	Unstream Catchment	Peak Flow Rate
Receiver	Area (ha)	(L/s)
DICB-26	3.2	149
DICB-27	0.36	53
DICB-1	10	300

Table 5: Receiving Flow Rates

De La Baie Road

No information is available on the capacity of the infrastructure on De La Baie Road. Due to only sheet flow being received from the undeveloped site, there is no formal outlet for point flow discharges onto De La Baie Road unless new infrastructure is constructed, and downstream capacity assessed.

County Road 17 Culvert

A PCSWMM model was developed to determine the flow rates to the County Road 17 Culvert. The catchment area, width parameter and slopes were calculated using the Watershed Delineation Tool in PCSWMM. The catchment imperviousness and CN value were determined from the Provincial Land Cover Database and the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Soils Mapping Hydrological Soils Groups.

The simulation was completed under the 12-hour SCS, 24-hour SCS and 1 hour AES storm distributions with the City of Ottawa rainfall depths for the various return periods. The 24-hour SCS storm distribution produced the higher peak flows at the culvert and the results for the storm under various return period events is shown in Table 6 below.

Return Period Event	Peak Flow (m ³ /s)
1:2 year	0.18
1:5 year	0.42
1:10 year	0.64
1:25 year	0.99
1:50 year	1.34
1:100 year	1.75

Table 6: Results for the Storm at Various Return Periods

Any changes to upstream flow rates due to the proposed developments will require quantity control to limit the post-development peak flows to pre-development levels.

4.2.3.4 Water Quality Requirements

Storm runoff from the SSA1 will be required to achieve an 80% TSS removal to meet the 'enhanced' protection level.

4.2.3.5 Source Water Protection

The site is not within an area mapped as providing significant groundwater recharge however there are parts of the site which overlay highly vulnerable aquifers and will require consideration during development.

5.0 Concepts

Three land-use concepts were developed for the SSA1 and are shown below in Figure 11-Figure 13. These options were designed by considering existing site conditions, potential servicing and transportation solutions, and optimal land uses (see Section 5.1 for land-use descriptions). The fourth option presented is the option to 'Do Nothing' as per the MCEA planning process specifications. The statistics for the four options are summarized in Table 7. Of options 1-4, two will be shortlisted and carried forward to the detailed evaluation phase in the Phase 2 report as described in Section 1.5. The primary objective of Phase 2 will be to identify a preferred solution of the options presented by evaluating the environmental, social, technical, and financial criteria for each option and further developing the preferred concept.

Land Use	Option 1	Option 2	Option 3	Option 4 'Do Nothing'
Overall Area (ha)	54.6	54.6	54.6	54.6
Business Park (ha)	16.3	32.8	46.7	0
Service Commercial (ha)	14.3	0	1.4	0
Commercial Core (ha)	15.9	13.7	0	0
Future Development Overlay (ha)	0	8.1	0	0
Medium Density Residential (ha)	4.0	0	6.5	0
High Density Residential (ha)	4.1	0	0	0
Special Study Area (ha)	0	0	0	54.6

Table 7: Statistics for Development Options 1-4

Figure 11: Rockland Secondary Plan Land-Use Concept Option 1

Figure 12: Rockland Secondary Plan Land-Use Concept Option 2

Figure 13: Rockland Secondary Plan Land-Use Concept Option 3

5.1 Land Use Designations

The intent of defining land use is to achieve a coherent and predictable pattern of development that can be adequately phased and serviced overtime. By grouping compatible uses together and separating incompatible ones, character areas can emerge as distinct places that accommodate the growing economic, environmental, and social needs of the City of Clarence-Rockland. Figure 11-Figure 12 divide SSA1 into varying land use combinations. The potential land uses for the Rockland West Secondary Plan are the following:

5.1.1 Business Park

The Business Park designation is intended to attract employment uses such as light industrial, offices and corporate headquarters. These uses generally prefer visibility from highways and they are normally separated from both major retail areas and traditional industrial uses. Uses within business parks are characterized by free standing buildings on individual lots in a planned subdivision setting. Some commercial uses that serve the business park would be desirable as long as they are minor in scale and accessory to the main business park use. Proximity to recreation facilities and open space would also be desirable to serve the employees.

5.1.2 Service Commercial

The area designated Service Commercial is intended to serve the needs of the various adjacent employment uses, residents of Clarence-Rockland, and the surrounding area. The uses within this area require relatively large parcels of land, large areas of surface parking, and access by major roads. To prevent or reduce conflicts, the Service Commercial uses will be required to provide adequate buffering to residential areas.

5.1.3 Commercial Core Area

The Commercial Core Area of the RWSP would be separate from and different in character to the Commercial Core Area located along Laurier Street. The Commercial Core Area of the RWSP is intended as a gateway to the City of Clarence-Rockland. The mixed-use area would provide a variety of functions, including retail, entertainment services, community facilities, tourist amenities, offices, parks and open spaces, and housing. It is also intended to make Rockland West a more complete community by providing amenities for residents, workers, and tourists, while integrating a mix of land uses over time. Given the high visibility of the Commercial Core Area, special attention must be given to the urban design guidelines as listed in Section 7.0 the City's Zoning By-Law No. 2016-10. Emphasis will be placed on creating a safe and attractive pedestrian-oriented environment.

5.1.4 Main Street

The Main Street of the SSA1 is intended to serve as the focal point of the Commercial Core Area. The Main Street will evolve as a lively, innovative community hub that prioritizes the pedestrian experience. This hub will be a live, work, play destination for residents and visitors of Clarence-Rockland.

5.1.5 Medium Density Residential

The Medium Density Residential designation is intended to permit residential uses such as semidetached dwellings, duplex dwellings, linked dwellings, multiple unit residential uses such as townhouses, or back-to-back townhouses to a minimum density of 35 units per net hectare and a maximum of 55 units per net hectare and stacked dwellings and low-rise apartment buildings no more than five storeys in height to a maximum of 65 units per net hectare. Small scale commercial uses will also be permitted to serve the local residential area.

5.1.6 High Density Residential

The High Density Residential designation is intended to permit Multiple unit residential uses such as townhouses, back-to-back townhouses, stacked townhouses, low-rise and mid-rise apartment buildings no more than nine storeys in height between 65 and 125 units per net hectare. Small scale commercial uses will also be permitted to serve the local residential area.

5.1.7 Environmental and Open Space Overlay

The Environmental and Open Space Overlay is intended for lands that have natural heritage and could be developed for stormwater management (SWM) facilities, and parks and open space. Development within the overlay may proceed in accordance with the underlying land use designation once the natural heritage has been studied and once SWM facilities have been appropriately planned and designed.

5.1.8 Future Development Overlay

The Future Development Overlay consists of reserved land, to be consolidated for future use.

5.2 Evaluation of Proposed Concepts

The initial screening of alternatives produced the results summarized below in Table 8. Concept options were evaluated as per the evaluation and selection methodology presented in Section 1.5. Options 1 and 3 were selected to be carried forward to the detailed evaluation stage to be conducted in Phase 2.

Description	Advantages	Disadvantages	Carried Forward?
Option 1	 Preserves natural waterway corridor Addition of business park, service commercial, commercial core, and high and medium density residential land use zones High land-use diversity Pedestrian focused main street included in commercial core 	 Comparatively complex traffic flow Increase in traffic with the addition of major and minor collector roads 	✓
Option 2	 Addition of business park and commercial core land use zones Pedestrian focused main street included in commercial core 	 Small environmental and open space overlay Increase in traffic with the addition of major and minor collector roads Least land-use diversity No land allotted to residential land use Comparatively complex traffic flow Future development overlay does not specify immediate land use 	×
Option 3	 Preserves natural waterway corridor Addition of business park, service commercial land, and medium density residential land use Comparatively simple traffic flow Highest density of high-demand business park land use 	 No pedestrian focused commercial core Increase in traffic with the addition of major and minor collector roads Minimal land-use diversity 	√
Option 4 - 'Do Nothing'	Preserves the natural environment of SSA1	 Does not support economic, social, or cultural growth in the City Does not align with Secondary Plan objectives 	×

5.2.1 Option 1 Evaluation

Option 1 is presented in Figure 11 and recommends zoning the SSA1 for business park, service commercial, commercial core, and high and medium density residential land use. This array of land uses provides the opportunity for economic activity and cultural enrichment in the SSA1 with the largest amount of service commercial, and commercial core land use areas of the concept options. The commercial core and main street specifically allow for pedestrian focused design. The presence of residential land use supports future population growth in the region. Option 1 has the least amount of business park land use which is the highest demand land-use for the SSA1 (see Shore-Tanner & Associates Market Study, Section 3.1). An environmental and open space overlay is present which can conserve the natural north/south water corridor within the SSA1. In terms of traffic, one new intersection and four new roundabouts are proposed for this concept. From the above conclusions, it is recommended that this concept option be carried forward to the detailed evaluation phase for further consideration.

5.2.2 Option 2 Evaluation

Option 2 is presented in Figure 12, this option recommends zoning the SSA1 for business park and commercial core land uses. This option provides the opportunity for economic activity and cultural enrichment in the SSA1, with less business diversity then option 1 as there is no service commercial or residential land. Option 2 also has a future development overlay, this has the benefit of providing flexibility in the future to rezone this land, but it also prevents the concept option from completely addressing the objectives of the Secondary Plan (see Section 1.2). The overlay would not provide direction for immediate land use meaning only the present-day land uses would be permissible to continue on the land. Of options 1-3, option 2 also has the smallest environmental and open space overlay area. Like option 1, one new intersection and four new roundabouts are proposed. It was determined that option 2 does not satisfy the needs of the City as well as the other alternative solutions and therefore it will not be carried forward to the detailed evaluation phase.

5.2.3 Option 3 Evaluation

Option 3 is presented in Figure 13, this option recommends zoning the SSA1 for mainly business park land use, with smaller portions designated for service commercial and medium density residential zones. This design would allow for increased economic activity and cultural enrichment in the SSA1, with less land use diversity than option 1 as there is no commercial core, or high-density residential lands. As per discussion with the City of Rockland-Clarence and the Shore-Tanner Market Study (Section 3.1), there is a shortage of commercial and industrial development in the City. The high density of business park land use in option 3 would allow for the most industrial development of the concept options. Option 3 conserves the natural north/south water corridor with an environmental and open space overlay congruent to that of option 1. The street layout of option 3 varies from options 1 and 2 as the eastern minor collector begins where the current commercial lands end to allow for better traffic flow. Though similarly to the first two concept options, one new intersection and four new roundabouts are proposed. Due to the abovementioned conclusions, concept option 3 will be carried forward to the detailed evaluation phase for further consideration.

5.2.4 Option 4 Evaluation

Option 4 is the option to 'Do Nothing', where the RWSP lands would remain classified as SSA1 and no further development would occur on the lands. This option would not solve the objective of the Secondary Plan, or the needs identified in the Shore-Tanner Market Study; no new land uses would be specified, and only current land use activities would be permissible. Not adding any infrastructure would preserve the natural environment which is the main benefit of this option. As per Bowfin's Environmental Study in Section 3.2, the SSA1 does not contain any significant natural heritage features. Bowfin also provided recommendations to responsibly develop these lands with respect to the watercourses and forests/thickets. This option minimizes the capital costs for developing these lands but would not present additional economic, social, or cultural benefits to residents as is anticipated with options 1, 2 and 3. This solution does not address the problem as defined as part of this Secondary Plan, therefore it will not be carried forward for further evaluation in Phase 2.

6.0 **Problem and Opportunities**

The following Problem / Opportunity Statement will be used as the basis for proceeding to Phase 2 of this Class EA:

The Secondary Plan will follow the Municipal Class Environmental Assessment (EA) and Planning Act process to establish a coordinated planning solution for development of this area. A Secondary Plan could present economic opportunities for the city and its residents through the establishment of acceptable land use designations leading to an increase in business and commerce in the region. In developing the Secondary Plan, there is an opportunity to consider impacts to neighboring properties, impacts to natural and social environment, climate change, and growth opportunities.

7.0 Conclusion and Next Steps

This report has been developed to summarize the Phase 1 work undertaken as part of the Master Planning process. Phase 1 has been used to identify the site-specific conditions and constraints of the RWSP lands, to develop planning and design options, to clearly define the boundary conditions from legislative and regulatory framework perspective, and to shortlist alternative development solutions for the SSA1.

Phase 2 of the Master Plan process will investigate servicing solutions through review of existing infrastructure, preparation of supporting studies (including desktop review of natural heritage, hydrogeological information, etc.), identification of servicing constraints, evaluation of high-level servicing options, and public consultation. Transportation strategies will be developed for each land-use concept and will encompass transportation demand management and active transportation infrastructure as priorities. A final preferred concept will be identified and developed further for the RWSP.

This report has been prepared by J.L. Richards & Associates Limited for City of Clarence Rockland's exclusive use. Its discussions and conclusions are summary in nature and cannot properly be used, interpreted, or extended to other purposes without a detailed understanding and discussions with the client as to its mandated purpose, scope, and limitations. This report is based on information, drawings, data, or reports provided by the named client, its agents, and certain other suppliers or third parties, as applicable, and relies upon the accuracy and completeness of such information. Any inaccuracy or omissions in information provided, or changes to applications, designs, or materials may have a significant impact on the accuracy, reliability, findings, or conclusions of this report.

This report was prepared for the sole benefit and use of the named client and may not be used or relied on by any other party without the express written consent of J.L. Richards & Associates Limited, and anyone intending to rely upon this report is advised to contact J.L. Richards & Associates Limited in order to obtain permission and to ensure that the report is suitable for their purpose.

J.L. RICHARDS & ASSOCIATES LIMITED

Prepared by:

Reviewed by:

Nikita Jariwala Planner Marc Rivet Manager, Associate, MCIP, RPP

Shore-Tanner Market Study

SHORE TANNER & ASSOCIATES REAL ESTATE APPRAISERS AND CONSULTANTS

Commercial and Industrial Market Demand Study: Clarence-Rockland Ontario

> Prepared for: J. L. Richards & Associates Limited on Behalf of the City of Clarence-Rockland

> > Prepared by:

Shore-Tanner & Associates

February 4, 2022

TABLE OF CONTENTS

Page number

Ι.	Executive Summary	3
II.	Subject Site and Environs	11
III.	Socio-Demographic Analysis	12
IV.	Housing Inventory and Growth Forecasts	17
V.	Retail Trends	22
VI.	Retail Expenditure Analysis	29
VII.	Retail Demand Estimation	34
VIII.	Summary of Existing Businesses	41
IX.	Office Market Demand Analysis	44
Х.	Industrial Market Demand Analysis	48

Appendix:

A:	List of Existing Businesses In Rockland	59

I. EXECUTIVE SUMMARY

On behalf of the **City of Clarence-Rockland**, and as a member of a multi-disciplinary team of consultants under the direction of **J.L. Richards & Associates Limited**, this study has been carried out by Shore-Tanner & Associates. **Its purpose is to determine the scope of market demand for retail, office, and industrial businesses in a new part of Rockland.** The main findings of the study are summarized below, followed by more detailed substantiation in the main body of the report.

A. Subject Site

The Subject Site is approximately 36 hectares (almost 90 acres) in size, adjacent to Rockland's existing Urban Area Boundary to the west. It is proposed to be added to the Rockland part of the City of Clarence-Rockland through an Expansion Lands Secondary Plan.

B. Major Socio-Demographic Findings

- 1. Rockland is a major commercial hub in Prescott and Russell United Counties (PRUC) and its businesses attract customers from within this area and beyond.
- 2. The total population of Clarence-Rockland increased by an average of 372 or 1.8%, and in PRUC by 915 or 1.1% per year from 2006 to 2016 (Table 3.1).
- 3. The 2021 population of Clarence-Rockland is estimated at 27,400 and that of PRUC at 96,500. Their estimated average annual growth to the year 2031 is 760 or 2.8% and 1,356 or 1.4% respectively (Table 4.3).
- 4. Considering that an overall average annual population growth of 1% represents a growing and balanced economy, the past and future growth of both of these areas have exceeded this generally accepted growth standard.
- 5. Due to the development of many housing units over \$350,000 and attracting affluent families, including from Ottawa, incomes in both areas have significantly increased recently. As shown in Table 3.3, the 2016 **median** household incomes were:

Clarence-Rockland	\$88,823
• PRUC	\$78,748
• City of Ottawa	\$85,981

This is particularly important since the adjacent City of Ottawa's household incomes are often among the top three to five cities in Canada.

C. Industrial Sector

- 1. Industrial and commercial businesses provide numerous economic benefits and spin-offs. They provide employment, increase municipal taxes, reduce workrelated travel, and significantly contribute to the economic self-sufficiency of cities and towns.
- 2. The City of Clarence-Rockland is a relatively rural, farming, but growing area. As shown in Table 10.1, the number of the working residents in industrial-type jobs are:

Clarence-Rockland 2,785 or 20.9% of totalPRUC 10,900 or 22.9% of total

- Most of these industrial-type jobs are in construction, repair of trucks and farm machinery, light manufacturing and assembly. Some of these construction and other jobs in Table 10.1 are outside the City of Clarence-Rockland, or PRUC.
- 4. The existing industries in PRUC are limited to small manufacturing, food processing, repair and maintenance of farm equipment, tractors, cars and trucks.
- 5. As PRUC, especially its Rockland part, grow in population and become more urbanized, their need for various industries, especially knowledge-based, economic growth businesses will increase.
- 6. Due to the rapid absorption and price increases for industrial lands in the City of Ottawa, we expect that demand for industrial lands in PRUC will increase in the coming years from Ottawa and the rest of PRUC.
- 7. Due to the nature of the products and services provided by industrial businesses, access to highways is ultimately essential for their success.

D. Retail Spending

- 1. On average, each resident of Clarence-Rockland is estimated to have spent \$18,110, and those of PRUC as a whole, \$17,380 in 2018 at all retail and service businesses within and outside these areas (we have estimated and used per capita spending for 2021–2031 in this report).
- The total spending of PRUC residents is estimated at \$1.677 billion in 2021, and expected to increase by \$23.4 million or 1.4% annually by the year 2031, to \$1.911 billion (Table 6.2).

- 3. The estimated spending portion of the residents of Clarence-Rockland from PRUC's total is \$514.3 million in 2021, and \$632.2 million in 2031 (i.e., average annual growth in spending of \$11.9 million or 2.3% (Table 6.3).
- 4. At present, some of the spending of PRUC residents takes place at businesses in Ottawa and elsewhere. This leakage-out is due to the following factors:
 - a) Some of the PRUC residents work in Ottawa and spend some of their retail dollars there.
 - b) There are no senior department stores (i.e., Simons, The Bay, Nordstrom) or other new and popular/trendy stores (e.g., J. Crew, Michael Kors) within PRUC. These stores exist in Ottawa, and attract customers from PRUC and other cities and towns within 1-2 hours drive.
- 5. There are, as well, customers from outside PRUC who shop at businesses there, especially at those in Rockland (i.e., leakage-in).

As more, especially new, businesses are attracted to Rockland, the leakages of PRUC's shopping dollars to Ottawa will decrease, and the leakages into PRUC will increase.

E. Retail Demand Estimation

- 1. The spending of the residents of Clarence-Rockland is estimated to support a minimum total of 1.027 million sq. ft. of floor space in 2021, increasing by an average of 24,160 sq. ft. or 2.3% annually, to 1.266 million sq. ft. by 2031 (Table 7.1).
- 2. The supportable increase by time frame is (Table 7.1):

• 2021–2023	73,600 sq. ft.
• 2023–2026	21,600 sq. ft.
• 2026–2031	143,400 sq. ft.
• 2021–2031	238,600 sq. ft.

3. At present, some of the total supportable space is outside Clarence-Rockland since its residents spend some of their total shopping dollars at businesses outside.

F. Inventory of Existing Businesses

As of May 2018 and late 2021, there were 146 retail and service businesses in Rockland, and they occupied an estimated total of 538,000 sq. ft. of floor space.

Including the limited number of such businesses in the Clarence part, the overall average floor space per capita in Clarence-Rockland is estimated to be 20 sq. ft.

Based on the industry standard of 30 to 40 sq. ft. of floor space per capita, the City of Clarence-Rockland is under-stored for retail and service businesses.

Of the 146 existing stores, a total of 14 with a combined size of 29,200 sq. ft. or 5.4% were vacant in 2018, and this rate is within the industry range of 4% to 8%. The vacancy rate is now more than 10% due to the pandemic since late 2019.

G. Recommendations

In the order of priority, and in the context of economic growth for the City of Clarence-Rockland, we recommend the following on the Subject Expansion Lands:

- 1. Industrial/Business Park
- 2. Office Buildings
- 3. Shopping Centre
- 4. Due to the fact that there is already ample vacant land for residential developments in Clarence-Rockland, we do not recommend residential developments.

Each of the above is further described below.

H. Recommended Industrial/Business Park

- 1. Demand for traditional land-intensive, as well as modern, knowledge-based industries is increasing due to the locational and other characteristics of Clarence-Rockland.
- 2. Historically, many industrial/business parks were started by land-intensive uses, such as warehouses, truck repair yards and low-tech manufacturing facilities.
- 3. Demand for land-intensive industries is generally declining. Due to farming in PRUC on the one hand, the growing need for industrial land including from the City of

Ottawa, we expect the demand for land-intensive businesses to grow in Clarence-Rockland.

- 4. The location of Clarence-Rockland, and economic growth expectations of its residents point to a growing demand for knowledge-based, digital, IT, life sciences and other such modern industries.
- 5. These industries, furthermore, are needed for the present and long-term economic health and growth of the City of Clarence-Rockland.
- 6. Therefore, we recommend as follows:
 - a. At 90 acres, the Expansion Land is large and can accommodate a combination of the old and new industries.
 - b. The new, modern, knowledge-based industries are mostly in office buildings, including some in industrial/business parks.
 - c. From the perspective of economic growth and future prosperity of the City of Clarence-Rockland, the best jobs in the Expansion Land would be IT, digital, life science, and other such industries.
 - d. In view of the increasing industrial land prices in the City of Ottawa, the resulting shortages and the adjacency of the City of Ottawa, some of the Expansion Land can be quickly used by the land-intensive industries in Ottawa who want to move out, but still be close to Ottawa.

7. Samples of Traditional/Land-Intensive Uses for the Subject Site

- a. RV dealership
- b. Micro-brewery
- c. Auto mall
- d. Show Room and Display
- e. Recreation, Entertainment, Hospitality
- f. Boat dealership & indoor winter facilities
- g. ATV, Snow Mobile
- h. Medical/dental businesses
- i. Truck parking/yard
- j. Auto mechanics
- k. Lumber & other home improvement supplies
- 1. Low-technology manufacturing and assembly businesses

Page 8

8. Samples of Modern Industries/Offices for the Subject Site

- a. Information technology
- b. Software engineering
- c. Life science laboratories
- d. Engineering firms
- e. Environmental research facilities
- f. Scientific testing, product safety & approval
- g. Professional businesses (accounting, legal, health)

The above are typically in office buildings, open and enclosed yards, manufacturing, testing, and storage buildings.

I. Recommended Office Space for the Subject Site

- 1. The existing estimated total office floor space of approximately 300,000 sq. ft. is too low for Rockland's future office industry advancements.
- 2. We recommend promoting Rockland for modern, knowledge-based industries such as IT and life sciences.
- 3. With a successful promotion of the above industries, we recommend a total of approximately 100,000 sq. ft. of additional office floor space in Rockland.
- 4. Being close to the City of Ottawa, the Subject Expansion Land is considered to be the best location in Rockland for new office space, in our opinion.
- 5. Most to all 100,000 sq. ft. of new office space are thus recommended to be on the Subject Expansion Land.

J. Retail Business Recommendations For the Expansion Lands

An overall average of up to 40 sq. ft. of retail and service floor space is generally supportable on a per capita basis.¹ Due to leakages in and out, however, it is not always

¹ At a total population of 27,400 in Clarence-Rockland in 2021, the total supportable floor space of 967,000 sq. ft. in 2018 represents 36 sq. ft. per capita at businesses within, but also outside this city (i.e., total supportable space within and outside Clarence-Rockland).

possible to accurately calculate the actual floor space supported by each resident by location of shopping.

What would be most needed on the Subject Site are locally-oriented food, convenience, and service businesses in the first few years. Other businesses will also be in demand, but the risk of over-storing should be avoided. Based on these considerations, we recommend the businesses in Table 1.1 for Rockland:

- 1. Total of approximately 100,000 sq. ft. of floor space by 2031.
- 2. Food, convenience, personal services: approximately 60,000 sq. ft. of above.
- 3. Specialty retail, fashion, gifts, others: approximately 40,000 sq. ft. of above.
- 4. No businesses offering durable or semi-durable products which already exist in Rockland (e.g., Walmart).
- 5. Review of the supply-demand dynamics in the entire expanded Rocklands once every five years in order to revise 1-4 above based on market forces.

The stores in Table 1.1 are for the entire City of Clarence-Rockland. Most, however, would be in Rockland, which is already a commercial hub within the County.

Since Clarence-Rockland is already understored and can support up to 238,600 sq. ft. of additional retail and service businesses, and given the proximity of the Subject Land to the eastern parts of Ottawa, we recommend up to 150,000 sq. ft. shopping centre on this land to be gradually developed after 2023.²

The Rockland part of Clarence-Rockland is not geographically very large. New retail developments can thus be located in different places within Rockland. The Subject Expansion Land, however, is adjacent to Orleans, and other southeastern parts of the City of Ottawa. A new shopping centre on this land can, therefore, attract shoppers from the eastern parts of Ottawa as well.

Our recommendations are for the next 10 years which is normal for market demand studies. For the next 25 years, a lot more than our recommendations would be needed in Clarence-Rockland.

² For the next 1–2 years, it would be best to let the present vacant stores be occupied/absorbed before adding new stores.

Table 1.1 Recommended Businesses To Select For Rockland			
Business Type	No.	Approximate Size (sq. ft.)	
Supermarket	1	40,000-50,000	
Convenience Stores	3	5,000-6,000	
Specialty Food Stores	3	4,000-6,000	
Pharmacies	2	8,000-12,000	
Computer Supply & Services	1	1,000-2,000	
Hardware Store	1	3,000-8,000	
Fashion Stores	2	3,000-8,000	
Specialty Retail	3	3,000-7,000	
Table Service Restaurants ¹	3	5,000-7,000	
Coffee Shops	2	3,000-4,000	
Fast Food Eateries	3	5,000-8,000	
Banks & Other Financial	3	6,000-10,000	
Beauty Salons, Barber, Spa	3	4,000-6,000	
Cannabis Stores	2	2,500-3,000	
Miscellaneous	5	2,500-5,000	
Office	5	5,000-8,000	
Total: Up to 40 Businesses 100,000-150,000			

¹ A destination-type restaurant (see pages 33-34).

Notes:

- 1. The above businesses are estimated to be needed and supported by the residents of Clarence-Rockland in the period 2021–2031.
- 2. If not provided on the Subject Lands, or elsewhere in Clarence-Rockland, the residents will increase their shopping at businesses elsewhere.

Source: Shore-Tanner & Associates

II. SUBJECT SITE AND ENVIRONS

A. Subject Site

The Subject Site is approximately 36 hectares (90 acres) in size, vacant, mostly flat, and located west of Rockland's existing Urban Area Boundary. There are several owners of this land, and it is proposed to be added to the City of Rockland through an Expansion Lands Secondary Plan.

B. Environs

At present, the Subject Site is being considered for low- and medium-density residential developments, commercial and industrial businesses.

Rockland is the more urban part of the City of Clarence-Rockland, and it includes most of the jobs, retail and office developments of the city. It is surrounded primarily by vacant and farming lands to the north, east, south and west extending to the City of Ottawa.

Another important factor about the future of the Subject Site, and more generally, the City of Clarence-Rockland, is the planned expansion of Highway 174. Its exact timing is still not known. When completed, it will make access from the eastern parts of Ottawa to Rockland much easier, faster and more convenient. Similar to the expansion of Highway 7 for Carleton Place, the expanded Highway 174 is expected to be a major economic growth catalyst for Rockland.

III. SOCIO-DEMOGRAPHIC ANALYSIS

A. Trade Area

The Subject Land would be most needed for retail, office and industrial businesses.

Based on the retail industry standards and practices, capture, market or trade area is one from which customers can be attracted for the purchase of the goods and services offered by the area's businesses. Primary Trade Area (PTA) typically provides at least 50% of the total sales of the businesses within. The rest of the area(s) which provide the balance of the total sales, is called Secondary Trade Area (STA). There can also be Tertiary Trade Areas (TTA) for businesses which attract/capture at least 10% of their total sales from outside the PTA and STA combined.

Based on field research, our knowledge of the area, and past studies, we have defined the following as the effective Market or Trade Area for non-residential developments on the Subject Site:

The City of Clarence-Rockland as the Primary, and the rest of Prescott & Russell United Counties (PRUC) as the Secondary Trade Area. The focus of this study, however, is the City of Clarence-Rockland.

Trade areas are not rigid, and change over time based on growth, transportation, competitive facilities, lifestyle, and other such changes and trends. A somewhat larger or smaller Trade Area would also be valid for the purposes of this study. However, we believe that what we have defined is quite reasonable for the commercial and industrial development objectives of this study.

B. Total Population: 2006-2016

- 1. The City of Clarence-Rockland and the rest of PRUC have continued to grow. For the 10-year period 2006-2016, their average annual growth was (Table 3.1):
 - Clarence-Rockland 372 or 1.8%
 - PRUC 915 or 1.1%
- 2. As of mid-2016, Statistics Canada's Census data show total populations of:

Clarence-Rockland	24,512
• PRUC	89,333

C. Households

- 1. The City of Clarence-Rockland has continued to experience higher growth rates and be more family-dominated than the rest of PRUC.
- 2. In 2016, the median age of the residents of Clarence-Rockland was 42.2 years (44.3 in PRUC), its overall average household size was 2.63 (2.52 in PRUC), and 5.8 in 10 of its households (6.2 in PRUC) consisted of only one ro two persons (Table 3.2).

D. Incomes

In 2016, the median household income of Clarence-Rockland residents was \$88,823, which is higher than the City of Ottawa's corresponding income of \$85,981 and much higher than PRUC's \$78,748. We believe that household incomes have increased significantly in Clarence-Rockland since 2016.

E. Growth Forecasts

Since 2016, residential and thus population growth have accelerated in Clarence-Rockland, and to a lesser extent, in the rest of PRUC. Based on the actual growth since 2016, under construction, planned, and proposed housing developments, the City of Clarence-Rockland, and Hemson Consulting Ltd. have provided population forecasts for both areas. Based on these forecasts, as well as housing starts in Table 4.2, we have prepared Table 4.3, which demonstrates the following average annual population increases for the period 2021-2031:

1. Clarence-Rockland	760 or 2.8%
2. PRUC	1,350 or 1.4%

Compared to the actual annual growth from 2006 to 2016, the figures in Table 4.3 appear to be too optimistic. However, for infrastructure planning purposes, it is prudent to use somewhat generous forecasts. As well, the actual 2016 population of PRUC was 89,333 (Table 3.3), whereas Hemson report's estimate was 88,700 (i.e., 633 or 0.7% lower than actual). Above all, as the City of Ottawa continues to expand eastward, while its housing

costs continue to be much higher than in Rockland, growth in Rockland/ PRUC will only further intensify. From this perspective, the forecasts in Table 4.3 seem quite reasonable, and may even be somewhat too low for the period 2021-2031.

As population grows, demand for jobs, commercial and industrial developments also grow (in addition to housing, of course). Our recommendations for the Subject Land are thus for the economic advancement of the present and future residents of Clarence-Rockland.

Table 3.1 Historical Population Data					
Year Clarence-Rockland Prescott and Russell United Counties (PRUC)					
2006	20,790	80,184			
2011	23,185	85,381			
2016	24,512	89,333			
Average Annual Change: 2006-2016:					
Numeric	372	915			
%	1.8	1.1			

Notes:

- ¹ In 2016, the median age of the residents was 42.2 in Clarence-Rockland, and 44.3 in PRUC.
- ² Due to the development of large family-housing units since then, both median ages may be about the same in 2021, or possibly slightly lower.
- ³ Generally, economists and planners consider an average annual population growth of 1.0% to represent an economically growing area.

Source: Shore-Tanner & Associates based on Statistics Canada's census data.

Table 3.2 Households By Size: 2016						
Household Size	Clarence-Rockland Prescott and Russe United Counties (PR			Russell es (PRUC)		
	No.	%	No.	%		
Single Person	1,810	19.4	8,125	23.0		
Two Persons	3,635	40.0	13,880	39.2		
Three Persons	1,590	17.0	5,665	16.0		
Four or More Persons	2,295	24.6	7,720	21.8		
Total	9,330	100.0	35,390	100.0		
Average Size	2.63	_	2.52	_		
Single and Two Persons Combined 5,445 58.4 22,005 6						

Source: Shore-Tanner & Associates based on Statistics Canada's census data.

Table 3.3Household Income Distribution: 2016					
Income Class (\$)	Clarence-Rockland		Prescott and Russell United Counties (PRUC)		
	No.	%	No.	%	
Under 40,000	1,460	15.6	7,825	22.1	
40,000-59,999	1,315	14.1	5,250	14.8	
60,000-79,999	1,355	14.5	4,925	13.9	
80,000-99,999	1,200	12.9	4,445	12.6	
100,000-124,999	1,375	14.7	4,550	12.9	
125,000-149,999	1,025	11.0	3,210	9.1	
150,000 & over	1,600	17.1	5,185	14.6	
Total	9,330	100.0	35,390	100.0	
Median Household	88,823	_	78,748	-	
Median Per Capita	33,773	_	31,249	-	
Average Household Income (\$):					
 Single Persons 		47,855		43,317	
• Two or More Persons		110,699		104,452	

Note: The 2016 median income for the City of Ottawa was \$85,981 and for the Province of Ontario it was \$74,287.

Source: Shore-Tanner & Associates based on Statistics Canada's census data.

IV. HOUSING INVENTORY AND GROWTH FORECASTS

The purpose of this chapter is mainly substantiation for Clarence-Rockland's population forecasts.

A. Existing Housing Inventory: 2016

- 1. Based on the 2016 data, there was a total of 35,390 housing units in PRUC, including 9,330 in Clarence-Rockland or 26.4% of the total (Table 4.1).
- 2. Ground-oriented units (i.e., singles, semis, rows, towns and duplexes) made up 87.8% in PRUC, and 88.0% in Clarence-Rockland.
- 3. In PRUC, owned units made up 77.3%, and in Clarence-Rockland, 81.3% of the total.
- 4. Rental housing units made up 22.7% of the PRUC, and 18.6% of the Clarence-Rockland units.

B. Housing Starts Since 2016

- 1. In the period 2015–2019, a total of 2,408 housing units were started in PRUC, including 808 or 33.5% of it in Clarence-Rockland.
- 2. The overall average number of housing starts in 2015–2019 was:

• PRUC	482 or 1.36%
Clarence-Rockland	162 or 1.74%

- 3. The figures in Tables 4.1 and 4.2 indicate that:
 - a. The City of Clarence-Rockland has been more oriented towards ownership rather than rental housing units compared to PRUC as a whole.
 - b. New housing developments in Clarence-Rockland have taken place at a slightly higher rate than in PRUC.

C. Population Forecasts

The vast majority of the existing housing as well as those under construction are familytype units consisting of singles, semis, towns and rows. We expect this trend to be dominant in the next 10 years, while 3, 4 and more storey apartments will also continue to increase in number and percentage of total housing. These trends provide further substantiation for our average annual population growth forecasts of 760 in Table 4.3.

D. Household Forecasts

1. In 2016, the numbers of the single and two-person households combined were (Table 3.2):

62.2%	or	6.2	in	10
	62.2%	62.2% or	62.2% or 6.2	62.2% or 6.2 in

- Clarence-Rockland 58.4% or 5.8 in 10
- 2. Based on the demographic characteristics of the residents of PRUC, as well as our experience with many other small towns and cities within up to two hours' driving distance from Ottawa,³ we expect the number and proportion of small households in PRUC to be higher now than in 2016, and continue to increase at a higher rate than households consisting of 3 or more persons.
- 3. Table 4.4 presents our forecast of households by size. As shown:
 - a. The total number of households in PRUC is estimated to increase by an average of 970 or 2.2%, including 460 of the total or 3.9% in Clarence-Rockland.
 - b. The total number of single and two-person households in PRUC is estimated to increase by an average of 620 or 2.3%, including 170 (3.9%) in Clarence-Rockland.

E. Housing Unit Requirements

- 1. Due to sharing of units by some single-person households, we estimate 0.95 housing unit requirement per single and two-person household combined. For the 3-person and larger, we estimate one housing unit per household.
- 2. Based on the above assumptions, we estimate the following additional housing requirements for the 10-year period 2021–2031 (Table 4.5):

Clarence-Rockland Total of 4,455 or 445 per year
PRUC Total of 9,939 or 939 per year

³ We have carried out studies in the Township of Russell, Towns of Carleton Place, Perth, Mississippi Mills, Renfrew, Kemptville, Pembroke, Smiths Falls, Lindsay, and the City of Brockville in the last 5 years.

Table 4.1Housing Inventory: 2016					
Housing Type	Clarence-Rockland		PRUC		
	No.	%	No.	%	
Single Detached	6,975	74.6	26,005	73.5	
Semi-Detached	380	4.1	2,235	6.3	
Rows, Towns & Duplexes	855	9.2	2,825	6.3	
Apartments (up to 4 storeys)	940	10.0	3,985	11.3	
Apartments (5 storeys and higher)	70	0.7	70	0.2	
Other	110	1.2	270	0.8	
Total	9,330	100.0	35,390	100.0	
Tenure:					
1. Owned Units	7,590	81.3	27,370	77.3	
Condominiums	495	5.3	2,010	5.7	
• Others	7,095	76.0	25,360	71.6	
2. Rented Units	1,740	18.6	8,020	22.7	

Source: Shore-Tanner & Associates based on Statistics Canada census data.

Table 4.2Housing Starts, Clarence-Rockland				
Year				
2015	112			
2017	213			
2018	179			
2019	208			
2020	318			
Total	1,030			
Average Annual	206			

Source: Shore-Tanner & Associates based on Statistics Canada census data.

Table 4.3Population Forecasts					
Year	Clarence-Rockland				
2016 (actual)	24,512	89,333			
2021	27,400	96,500			
2023	28,700	99, 700			
2026	31,000	104,500			
2031	35,000	110,000			
Average Annual Increase: 2021–2031:					
Numeric	760	1,350			
%	2.8	1.4			

Source: Shore-Tanner & Associates based on partial estimates from the City of Clarence-Rockland.

Table 4.4 Household Forecasts						
Year	Clarence-Rockland		PRUC			
	One & Two Persons	Three & Larger	Total	One & Two Persons	Three & Larger	Total
2016 (actual)	5,445	3,885	9,330	22,005	13,385	35,390
2021	7,200	4,700	11,900	26,400	16,900	43,300
2023	7,800	5,180	13,000	27,300	17,200	44,500
2026	8,200	5,400	13,600	30,400	18,100	48,500
2031	10,100	6,400	16,500	32,600	20,400	53,000
Average Annual Change: 2021–2031						
Numeric	290	170	460	620	350	970
%	4.0	3.6	3.9	2.3	2.1	2.2

Source: Shore-Tanner & Associates

Table 4.5 Estimated Total Housing Requirements						
Year	Clarence-Rockland		Clarence-Rockland PRUC			
	Small Households ¹	Large Households ²	Total	Small Households	Large Households	Total
2021	6,840	4,700	11,540	25,080	16,900	41,980
2023	7,410	5,180	12,590	25,935	17,200	43,135
2026	7,790	5,400	13,190	28,880	18,100	46,980
2031	9,595	6,400	15,995	30,970	20,400	51,370
Total	2,755	1,700	4,455	5,890	3,500	9,939
Average/Year	275	170	445	589	350	939
%/Year	4.0	3.6	3.9	2.3	2.1	2.2

- 1. Single and two-person households combined, at 0.95 units per household.
- 2. Three-person and larger households at 1.0 unit per household.
- 3. For all households combined, a total of 4,455 additional housing units of all types are estimated to be required for the growing population of Clarence-Rockland, and 9,939 for the residents of PRUC, including Clarence-Rockland.
- 4. For the single and two-person households combined, however, an average of 275 additional units is required per year, for a total of 2,755 units for Clarence-Rockland, and 589 units per year or a total of 5,890 units in PRUC.
- 5. Due to the existing ample supply of vacant land for residential developments, we do not recommend any residential developments on the Subject Expansion Land. The above table has been used as a basis for the population forecasts in Table 4.3.

Source: Shore-Tanner & Associates.

V. RETAIL MARKET TRENDS

This section presents a number of major trends and changes in shopping habits, patterns, and new retail facilities. While our recommended businesses for the Subject Land are mostly for the day to day local and convenience shopping, the knowledge of the retail industry trends provides additional understanding for this ever-changing and highly competitive industry.

A. Unprecedented Recent Changes

- 1. During approximately five years prior to the Covid-19 pandemic (2015–2019), shopping at large box stores, discount stores, luxury stores, and especially online shopping had increasingly become popular.
- 2. These trends had taken significant retail spending away from the mid-quality/midprice retail businesses. As a result, many of these businesses in general, especially those on traditional main streets, were already struggling for survival.
- 3. The pandemic of 2020–2021 has devastated most of the retail industry in unprecedented ways, resulting in high vacancy rates, especially on traditional main streets.⁴ In a significant way, the rapid increase in online shopping with free and/or quick delivery has been the cause of this sorry situation.
- 4. Appliance, furniture, hardware and sporting goods stores, supermarkets, and pharmacies have generally performed better during the pandemic. Just about all other retail and service businesses, especially coffee shops, restaurants, bars, cinemas, musical, artistic and other performing businesses have suffered; a large number of them have closed down, or will be closing in the coming months.
- 5. Since late July 2021, the pandemic has been weakened and businesses are slowly opening up with certain restrictions.
- 6. Due to various governmental assistance programs, as well as the pandemic limitations, the majority of people generally have lots of savings (i.e., unspent money).

⁴ For example, in February 2021, there were 19 vacant and for-lease stores on Richmond Road in Westboro, plus a number of vacant stores without "for lease" signs (based on a study for a business on Richmond Road, one of the most popular shopping districts in Ottawa).

- 7. Starting in the fall of 2021, the retail industry began to recover strongly and fast. Hospitality and cultural industries, in particular, benefited significantly from this recovery until late November, when a new variant (Omicron) began to slow down the recovery.
- 8. There are also a number of other new or strengthening trends which have been partially caused by the pandemic. They include:
 - Continuation of the popularity of online shopping and free delivery of products. While weaker than during the pandemic, most experts believe that it will be used more often than in the pre-pandemic period.
 - b. There is a new/stronger interest from consumers in buying local and supporting small businesses on traditional main streets.
 - c. During the pandemic, people's sense of community, helping and socializing with neighbours has increased. This could contribute to more shopping at local, especially main street stores.
 - d. Awareness and concern for the environment has also increased due to the pandemic, fires, record heatwaves, rapid weather changes, etc. These factors will impact consumption patterns, thus shopping habits.
- 9. While retail spending will begin to get back to normal and likely increase in 2022, the retail industry in general is expected to be more challenging, especially for small businesses.
- 10. The above points provide information about the recent past and near future of the retail industry. Below are more retail trends and their historical evolution.

B. Retail Stores

A number of new types of shopping facilities, most of which have their origins in the U.S., were introduced into the Canadian market in the late 1990s. The major new shopping facilities in this regard are:

1. **Box Stores:** Costco, Walmart, and The Home Depot fall into this category. These are often referred to as big-box stores, since they are typically larger than 100,000 sq. ft. There are also medium-sized box stores, such as Winner's (clothing), Staples (office products), and Globo shoes, which are typically between 20,000 to 50,000 sq. ft.;

- 2. Large Format Stores such as Canadian Tire and the Great Canadian Super Stores. These are mostly new versions of the same stores, but significantly larger (often between 70,000 to 150,000 sq. ft.), offering a much wider assortment of products and services;
- 3. **Dollar Stores** which are typically between 1,000 to 5,000 sq. ft., specializing in mostly low-cost imports priced at up to \$5.00 per item (e.g., Dollarama, A Buck or Two, The Dollar Store);
- 4. **Power Centres** are typically between 200,000 to 1,000,000 sq. ft., consist of a variety of box and traditional stores in open malls, with each store having its own pad and parking in front to the extent possible;
- 5. **Specialty Stores** such as Starbucks (coffee shop), Mountain Equipment Coop (outdoors store), Lululemon (Yoga wear), Sassy Beads (jewellery, craft), and Brio (shoes, clothing, accessories);

6. De-Malling

Another recent trend in the retail industry is the conversion of old and small enclosed shopping malls into open, uncovered shopping centres (referred to as demalling). Malls which are over 20 years old and up to about 300,000 sq. ft. in size are usually targets for being de-malled. A de-malled shopping centre is less costly to operate since there are no indoor areas to be heated, cooled, cleaned or supervised. As well, the corridors and other public spaces are converted to leasable floor space.

7. Store Enlargements

Another significant trend in the retail industry is the enlargement of existing stores at the same or a new location. Large stores are in a much better position than small and medium-sized stores to offer one-stop-shopping opportunities. Many supermarkets, hardware, furniture, electronics, department, and home improvement stores have in recent years expanded their size in the same or a new location within the National Capital Region. In some other cases, new stores from the same chain are built much larger.

8. Walmart Supercentres

In the early 2000s, the Walmart chain stores finally won the right to offer food products at their stores. Called Supercentres, these new Walmart stores have the equivalent of a 50,000 sq. ft. supermarket within them, including produce, fresh meat, deli, dairy, as well as general merchandise (i.e., canned and boxed food

products). The food section is usually on one side of these huge stores, and clothing, furniture, and other non-food products on the other side.

At these stores, the cost of food and other products are generally lower, but more importantly, perceived to be lower due to effective advertising, than at competitive stores.

9. Recent Entries Into the Ottawa Market

In September 2013, several (American) Target stores were opened in Ottawa in previously Zellers stores, and more were planned. Soon after, however, they were all closed down and to this date, some of them are still vacant. An H&M store was opened in Bayshore Shopping Centre in October 2013 and more since then elsewhere in Ottawa.

In February 2012, a Marshall's department store was opened in the Train Yards Shopping Centre, there are four of them now in Ottawa, and more are planned to open. In November 2011, the new and expanded IKEA store at approximately 410,000 sq. ft. was opened in Pinecrest Centre. In early 2011, a Forever 21 store was opened at the Rideau Centre. Since then, it has expanded and attracted a large number of luxury stores such as Michael Kors, Tiffany &Co., and Kate Spade.

A Whole Foods Supermarket and a large number of other retail and restaurants have opened at Lansdowne Park as part of its major redevelopment plan since 2014. Nordstrom, Topman, Simons and a few other American and European stores have also come to Ottawa in the last five years.

In addition to these new facilities, new methods of conducting business have been created. Purchasing through the Internet is one example. Twinning is another example which makes it possible for two businesses to complement each other, while saving on insurance, utilities, taxes, staff, and other costs. Examples in this regard include Chapter's book stores and Starbucks, Walmart and McDonald's restaurants, The Home Depot and Harvey's restaurants. **Online shopping has been growing very rapidly in the last five years, and expected to grow further from its estimated total market share of approximately 10% or more of total spending in Ottawa (it was about 5% prepandemic).**

C. Reasons For Success of the New Store Types

There are many reasons for the introduction and successful operation of these new stores, as well as the new merchandising formats. Chief among these are:

- 1. Population growth, affluence, and especially ethnic and economic diversity, create demand for new products, services, and methods of buying and selling.
- 2. Many retail markets in Canada including in Ottawa are considered to be still offering a limited variety of shopping facilities with primarily average quality products at above average prices. Choices at discount/value, as well as at upscale/high-quality ends of the shopping spectrum in particular, are still limited.
- 3. Power centres and stand-alone box stores have lower operating costs (e.g., little or no common-area charges compared to enclosed malls), provide ample parking situated very close to their entrances, offer one-stop-shopping opportunities, their prices are and/or are perceived to be lower than conventional stores, and they are very successful at selling large quantities of products.
- 4. For a wide variety of economic, demographic, and lifestyle reasons, many people seem to prefer shopping at these large, new-format and specialty stores.

D. Present Shopping Patterns and Habits

Based on knowledge, experience, observations, and **hundreds** of consumer research surveys, we believe that shopping patterns and habits are solidifying, as follows:

1. Power centres, big-box and other discount-oriented shopping facilities are here to stay. Their main advantages are real and/or perceived value, choice, and large quantities. Shoppers tend to go to these stores about once a month, and for the specific and pre-determined purpose of actual shopping (for household and/or office products), rather than browsing, window shopping, socializing or just passing time. Typically, they prepare a list of what they want to buy ahead of time, follow it through, buy and bring home large quantities of products.

This type of shopping is rather arduous, especially for older people, those who do not have or wish to spend lots of time for shopping, and those who are affluent enough for whom discount/value is not that important. The amount of time, planning, and the energy required are the main reasons why shopping at these
facilities is generally infrequent (although there are customers from all socioeconomic classes who only or mostly shop at these stores).

- 2. Shopping at regional, community shopping centres, and especially in downtown and on other pedestrian-friendly streets such as Bank Street, is often for fashion, specialty products and services, meeting, dining, socializing, entertainment and cultural activities. There is frequently comparison-shopping, browsing, and cross-shopping at these facilities, especially during holidays and for special occasions (birthdays, anniversaries, etc.). Trips to these facilities do not necessarily always result in purchases due to the entertainment/socializing/dining factors, and also for purposes of comparison shopping. Thus, the fun and multipurpose functions of these trips, combined with the far more diverse, attractive, and comfortable atmospheres of these facilities, attract shoppers there more frequently than power centres and big-box stores do.
- 3. Shopping at **highway commercial** facilities is also destination oriented and closer in function to shopping at power centres and big-box stores, than to shopping at regional and community shopping centres, or on main streets. Furniture, electronics, appliances, automotive, box stores, restaurants, and other services often dominate highway commercial strips. Shoppers typically go to these establishments for specific products and/or services, based on pre-determined shopping plan. While there may be comparison shopping, there is usually no window-shopping, socializing, browsing, or cross-shopping. Other than for restaurants, banks, gasoline, and other services, shopping at highway commercial stores is infrequent (furniture, electronics, appliances, and major auto repairs are normally needed less than once a year by most households).
- 4. The retail industry is dynamic and rapidly evolving. Shoppers demand choice, variety, convenience, value, and fun. In a healthy market, there is a balance between the traditional main street retail stores, suburban shopping centres, and the new and emerging retail facilities as described above.
- 5. In the competitive environment of today, maintaining market share, and especially increasing it, is a major challenge for all shopping facilities and districts, requiring new thinking and approaches to merchandising and customer relationship. Targeted use of social media, online services, better understanding of the retail market trends, more awareness of competition from shopping centres and districts, and better recognition of the needs,

preferences, and desires of the Trade Area residents are among the key elements of new thinking and approaches, which have to be considered for the planned retail market on the Subject Site, and more generally, in the City of Clarence-Rockland.

VI. RETAIL EXPENDITURE ANALYSIS

Spending at retail and service businesses depends on numerous socio-demographic, lifestyle, and locational factors. Based on hundreds of retail market studies by our firm and other research organizations, income is the most influential factor. Often, the higher their income, the more people shop, spend, and thus support the continuation and/or expansion of businesses.

The estimation of demand for supportable floor space is highly analytical and therefore numerically oriented. The detailed results of the analytical part of the demand estimation are presented in the next chapter, after the estimation of expenditure potentials below.

A. Base Year Spending Selection

Based on population growth, increasing incomes, additional employment and tourism, the overall average spending per person typically increases. There are, however, situations where the average spending stays static or even declines. The years 2000 and 2008 are two examples in this regard.

The most recent, longest lasting, and severest decline in retail spending since 2000 started in late 2019 due to the Covid-19 pandemic, which is still having an impact on shopping and spending. From late 2019 to September 2021, per capita spending has, overall, been declining and/or fluctuating. What is known in this respect is as follows:

- 1. Spending at supermarkets, most other food stores, hardware, furniture, sporting goods and appliance stores, pharmacies, psychotherapy, Zoom, Netflix and some other businesses has increased very significantly. These are mostly necessity, home-improvement, and mental health industries.
- 2. In areas with a large number of tourists, visitors, large government and/or corporate/industry centres (e.g., Town of Lindsay for its cottages, City of Ottawa for the Federal Government, and City of Toronto for the finance industry), the total spending (i.e., sales) at some of the businesses in number 1 above have actually declined since late 2019 due to the pandemic.
- 3. Spending at clothing, shoe, jewellery, gift, and specialty stores; restaurants, gasoline stations, dry cleaning, cultural, sports, entertainment facilities, and many other businesses have declined drastically.

The pandemic, in short, has caused too many changes in retail spending/sales since late 2019. As a result, the available data on retail expenditures for 2019–2021 are not considered valid as a base for future spending forecasts.

With the majority of residents in Canada having been twice vaccinated as of September 2021, businesses are slowly opening up. Assuming that the year 2022 will be the beginning of the return to normality as far as retail spending is concerned, we have decided to use the spending for the full year 2018 as the base year for forecasting purposes for this study, and estimated it for 2021–2031.

B. Per Capita Expenditures

Statistics Canada is the primary source for expenditure data at retail and service stores across Canada. For this study's Trade Area, the data are estimated based on income comparisons, since they are not available for Clarence-Rockland.

The overall median per capita income in 2016 of Trade Area residents was \$33,773 and this was higher than Ontario's which was \$28,572 in 2016. Incomes in both areas are higher now.

In Table 5.1, we have provided estimates of per capita expenditures by the residents of the Trade Area for a number of trade groups which are standard in the retail industry. As noted, we estimate the overall average per capita spending of the TA residents to be \$17,386 in 2018. Of course, due to mortgages, family size and other factors, some individuals and families spend less, and others more than these averages, depending on their disposable income.

C. Total Retail and Service Expenditures

The estimated total expenditures of the residents of UCPR and Clarence-Rockland are provided in Tables 5.2 and 5.3.

Table 6.1 Estimated Per Capita Retail and Service Spending: 2018					
Trade Group	UCPR Spending (\$)	Clarence-Rockland Spending (\$)			
A. Retail Product Stores					
Supermarkets	2,290	2,400			
Convenience Stores	220	235			
Specialty Food	195	205			
Beer, Wine & Liquor	670	700			
Drugs & Patent Medicine*	1,105	1,160			
Clothing	820	860			
Shoes, Jewellery & Accessories	235	250			
Home Furnishings	125	130			
Electronics & Appliances	495	520			
Furniture	285	300			
Building Materials, Hardware & Garden Supplies	850	890			
Sporting Goods, Hobbies, Music & Books	300	315			
Used, Recreation & Other Vehicles	470	490			
New Car Sales	2,800	2,900			
Auto Parts & Accessories	190	200			
Gasoline & Service Stations	1,410	1,400			
General Merchandise	960	980			
Department Stores	720	750			
Other Retail Stores	350	370			
Subtotal: Retail Products	14,490	15,055			
B. Retail Service Businesses					
Restaurants, Bars & Other Eateries*	1,220	1,300			
Personal Care Businesses*	215	225			
Sports, Recreation & Entertainment*	1,455	1,530			
Subtotal: Service Businesses2,8903,055					
Grand Total: All Stores & Businesses 17,380 18,110					

* Estimated

- 1. These figures have been estimated for the period 2021–2031 for the calculation of total spending potential in Tables 6.1–6.3.
- 2. Online spending is **not** included.
- Source: Shore-Tanner & Associates based on CANSIM Tables 080-0030 and other relevant Statistics Canada data.

Table 6.2 Estimates of Total Spending By PRUC Residents							
Trade Group 2021 (\$M) 2023 (\$M) 2026 (\$M) 2031 (\$M)							
Population	96,500	99,700	104,500	110,000			
A. Retail Product Stores							
Supermarkets	221.0	228.3	239.3	251.9			
Convenience Stores	21.2	21.9	23.0	24.2			
Specialty Food	18.8	19.4	20.4	21.4			
Beer, Wine & Liquor	64.6	66.8	69.9	73.7			
Drugs & Patent Medicine*	106.6	110.1	115.4	121.5			
Clothing	79.1	81.7	85.6	90.2			
Shoes, Jewellery & Accessories	22.7	23.3	24.5	25.8			
Home Furnishings	12.1	12.5	13.1	13.7			
Electronics & Appliances	47.8	46.2	51.7	54.4			
Furniture	27.5	28.4	29.8	31.4			
Building Materials, Hardware & Garden Supplies	82.0	84.7	88.7	93.5			
Sporting Goods, Hobbies, Music & Books	29.0	29.8	31.3	32.9			
Used, Recreation & Other Vehicles	45.3	46.8	49.1	51.7			
New Car Sales	270.2	279.1	292.6	307.9			
Auto Parts & Accessories	18.3	18.9	19.8	20.9			
Gasoline & Service Stations	136.1	140.5	147.2	155.1			
General Merchandise	92.6	95.6	100.4	105.5			
Department Stores	69.5	71.8	77.2	79.2			
Other Retail Stores	33.8	34.9	36.6	38.5			
Subtotal: Retail Products	1,398.3	1,444.2	1,513.8	1,593.6			
B. Retail Service Businesses							
Restaurants, Bars & Other Eateries*	117.7	121.6	127.5	134.1			
Personal Care Businesses*	20.7	21.4	22.4	23.7			
Sports, Recreation & Entertainment*	140.4	145.0	152.0	160.0			
Subtotal: Service Businesses	278.9	288.0	301.9	317.8			
Grand Total: All Stores & Businesses	1,677.2	1,732.2	1,815.7	1,911.4			

* Estimated

1. Online spending is **not** included.

Note: The average annual percentage increases in spending are identical to the estimated population growth of 1.4% in Table 4.3. The dollar figures above are all in the constant value of the Canadian dollar in 2018. In other words, inflation is **not** included in order to avoid possible over-estimation.

Source: Shore-Tanner & Associates.

Table 6.3 Estimates of Total Spending By Clarence-Rockland Residents						
Trade Group 2021 (\$M) 2023 (\$M) 2026 (\$M) 2031 (\$M)						
Population	27,400	28,700	31,000	35,000		
A. Retail Product Stores						
Supermarkets	68.1	68.9	74.4	84.0		
Convenience Stores	6.7	6.8	7.3	8.2		
Specialty Food	5.8	5.9	6.3	7.2		
Beer, Wine & Liquor	19.9	20.1	21.7	24.5		
Drugs & Patent Medicine*	32.9	33.3	36.0	40.6		
Clothing	24.4	24.7	26.6	30.1		
Shoes, Jewellery & Accessories	7.1	7.1	7.8	8.8		
Home Furnishings	3.7	3.8	4.0	4.6		
Electronics & Appliances	14.7	14.9	16.1	18.2		
Furniture	8.6	8.7	9.3	10.5		
Building Materials, Hardware & Garden Supplies	25.3	25.6	27.6	30.5		
Sporting Goods, Hobbies, Music & Books	8.9	9.1	9.8	11.0		
Used, Recreation & Other Vehicles	13.9	14.1	15.2	17.1		
New Car Sales	82.3	83.3	90.0	101.5		
Auto Parts & Accessories	5.7	5.9	6.4	6.9		
Gasoline & Service Stations	39.8	40.1	43.4	48.9		
General Merchandise	27.8	28.1	30.4	34.3		
Department Stores	21.3	21.5	23.2	26.2		
Other Retail Stores	10.5	10.6	11.5	12.9		
Subtotal: Retail Products	427.2	432.1	476.0	526.4		
B. Retail Service Businesses						
Restaurants, Bars & Other Eateries*	37.1	38.7	43.5	45.5		
Personal Care Businesses*	6.4	6.7	7.4	7.8		
Sports, Recreation & Entertainment*	43.6	45.5	50.1	53.5		
Subtotal: Service Businesses	87.1	90.9	99.6	106.8		
Grand Total: All Stores & Businesses	514.3	523.0	757.6	633.2		

* Estimated

1. Online spending is **not** included.

Note: The average annual percentage increases in spending are identical to the estimated population growth of 2.8% in Table 4.3. The dollar figures above are all in the **constant** value of the Canadian dollar in 2018. In other words, inflation is **not** included in order to avoid possible over-estimation of demand for additional floor space.

Source: Shore-Tanner & Associates.

VII. RETAIL DEMAND ESTIMATION

A. Productivity Rates

In Tables 5.1-5.3, we have provided estimates of the available spending by Trade Area residents. The next steps involve the estimation of how much floor space these expenditures can support. For these steps, productivity rates or sales per sq. ft. are needed.

Based on over 100 retail studies in the last 20 years, including in-person confidential meetings and surveys of at least 2,000 business managers and/or owners, we have obtained actual and closely estimated sales data. Many of these studies have included presentations at the Ontario Municipal Board hearings where actual sales data were presented by opposing parties and analyzed. Based on these studies, ongoing research, and review of retail trends, we have provided realistic ranges of annual sales per sq. ft. for the types of retail and service businesses most likely to be viable on the Subject Site. As shown in Table 6.1, the average annual sales per sq. ft. at food stores, for example, is estimated to be \$559 at retail, and \$329 at service businesses.⁵

B. Total Supportable Floor Space

Table 6.1 presents the total supportable floor space for each business for the years 2021–2031. As demonstrated, Clarence-Rockland residents' spending is estimated to be supporting a total of 1.027 million sq. ft. of retail and service business floor space in 2021, at businesses within, but also outside this area. The total supportable space will, of course, increase each year, based on population growth and affluence.

In Table 6.2, we have identified the increase in supportable demand for each business. As demonstrated, the supportable increase in the total floor space is as follows by time periods by the residents of Clarence-Rockland:

⁵ As mentioned before, we have used the average per capita spending, as well as the annual average sales per sq. ft. for 2018, because the data for 2019–2021 represent the pandemic conditions which are not normal or valid for the period 2021–2031.

1.	2021-2023	73,600 sq. ft.
2.	2023-2026	21,600 sq. ft.
3.	2026-2031	143,400 sq. ft.
4.	2021-2031	238,600 sq. ft.

In other words, the available spending potential of Clarence-Rockland is estimated to generate demand for 238,600 sq. ft. of additional retail and floor space by the year 2031.

The demand generated from the residents of PRUC is, of course, much larger. As in the past, many residents of PRUC outside the City of Clarence-Rockland are expected to do much of their shopping at businesses in Rockland. It is therefore necessary to address their spending, in addition to the spending of the Clarence-Rockland residents.

As demonstrated in Table 5.1, the overall average spending of each resident of PRUC is estimated to be \$17,380 in 2018. At this rate, the total spending of PRUC is estimated at \$1.677 **billion** in 2021, increasing by an average of \$23.4 million annually, to a total of \$1.911 **billion** in 2031 (Table 5.2).

In view of the relative abundance of retail and service businesses in Rockland, and also in the City of Ottawa, much of the total spending of PRUC residents happens in these two cities. Regardless of where their spending takes place, it is necessary to first determine how much floor space can their spending support. Table 6.1 provides this answer by individual retail and service groups. As demonstrated in Table 6.1, the total spending of residents of Clarence-Rockland is estimated to support a total of at least 1,027,500 sq. ft. of retail and service floor space in 2021 or 37.5 sq. ft. per person. By 2031, an estimated 238,600 sq. ft. of additional floor space would be supported by the residents of Clarence-Rockland.

C. Market Demand and Spending Trends

Increased incomes, knowledge, and curiosity generate demand for new and/or different retail products and services. The retail industry is also dynamic, highly competitive, and follows as well as leads consumer needs and desires.

Many of the consumer products and services fall into the category of basic necessities (e.g., food, cleaning products, and banking). Others are for pleasure, entertainment recreation, and special events. There are also discretionary products and services. **Regardless of type, all retail products and services are subject to improvements, innovations, price, availability, and other changes.**

In recent years, consumers as well as producers of retail products and services have been increasingly paying more attention to, and promoting local, fresh, and environmentally improved shopping. The three Rs in consumption (i.e., reduce, re-use, and recycle) are increasingly being more followed. Organic, locally produced, other real and/or believed environmentally improved products and services are being increasingly more demanded by consumers. (In contrast, so is online shopping, which is mostly in opposition to the three Rs.)

Improved products and services are being increasingly more demanded by consumers. **One of the strongest and continuous expectations of consumers is new products and services.** In this regard, the number of new, specialty and unique retail businesses has been increasing rapidly in recent years. A few such businesses in Ottawa are *Seed to Sausage, Bargain Box, The Papery, Cats R Us, NU Grocery, Uncle Tetsu's Japanese Cheesecake Bakery*, and the many microbreweries and cannabis stores.

New York City in the U.S. is one of the largest centres of new fashion and other products and services. In a recent research tour of Manhattan (July & August 2021), we observed many vacant retail stores, many more kiosks on mid-town Manhattan streets than before the pandemic selling food, clothing and other retail products, and unusual sales at normally very exclusive stores in expensive/fancy shopping centres (some of these stores allowed customers in by appointment only in the past, not for safety reasons, but for the convenience and comfort of their ultra-wealthy clients. To us, this change represented the depth of the pandemic's damage to the retail industry.

Next, we travelled to the State of Vermont, which is known for the large number of tourists it normally attracts. The town of Woodstock in Vermont is charming, and highly popular for tourists. We found it to be busy, with no more vacant stores than before the pandemic. Its restaurants, bars, clothing and especially its gift stores were quite busy, and all had more sales signs than usual.

While in Vermont, we found out about a new and unique restaurant which had been nationally advertised. It was more than one hour drive from Woodstock in the village of Royalton. As a new, unique, highly successful restaurant, we recommend this restaurant for the Subject Site.

It is called *Worthy Burgers*, was opened about 6 years ago, and two more have been opened elsewhere since then. It is in a farming area, with unpretentious, average indoor seating. It has a large bar, more than 12 picnic tables outdoors, each providing up to 10 bench seats, and a small stage for live music.

It offers beef, turkey and chicken burgers, fresh cut French fries, fried chicken, fried tuna, normal soft drinks, and beer, all served on recycled paper in baskets (i.e., no dishes). **Everything, other than tuna and soft drinks, are produced and purchased from their own and/or the adjacent farms, and prices were between \$12 and \$18.** The beer is made onsite. In our opinion, this business is an excellent example of a new, unique, fresh, affordable, and environmentally low-impact restaurant. Other than farms, and a few farmhouses, there is nothing near this restaurant, and it is about 30 minutes' or longer drive from other parts of Vermont.

In another recent trip to the City of Montreal (Friday September 3: Labour Day Weekend), which is also a major centre of new retail trends, we visited Saint Denis and Sainte Catherine Streets. Both are highly popular with residents and tourists. On a Friday night, with ideal weather, Saint Denis was closed to traffic from Sherbrooke Street to Maisonneuve Street (i.e., the most popular part of Saint Denis). There were outdoor seats partially on sidewalks, and partially on the street, and a 3-person band played live music. The variety of the outdoor furniture, colours, lighting, and other visual creation could hardly have been better. The atmosphere was happy, festive, and ideal for browsing, dining, drinking and socializing.

Within these two blocks, there were 8 vacant and for-lease stores, which reflect the seriousness of the pandemic's damage on this highly popular street. Other new businesses on these two blocks were three vegetarian restaurants. At least two of them were not there a few years ago, reflecting changes in consumer habits and expectations.

On Sainte Catherine Street also, there were many vacant and for-lease stores. This street is known for its new, unusual, eccentric, as well as the normal retail and service businesses.

On our visit, we noted a large number of ethnic-type restaurants, including vegetarian ones, fashion stores, tourist product stores, nude/pornographic shows, and a large and busy erotic-products store.

In contrast to our visit of this street in the summer of 2020, Sainte Catherine Street was crowded, many pedestrians were walking there leisurely, and there were customers in most stores.

Table 7.1 Estimates of Minimum Total Supportable Floor Space By Clarence-Rockland Residents: Square Feet					
Trade Group	2021	2023	2026	2031	
A. Retail Product Stores					
Supermarkets at \$700/sq. ft.	97,300	98,400	106,600	120,000	
Convenience Stores at \$300/sq. ft.	22,300	22,700	24,300	27,300	
Specialty Food at \$450/sq. ft.	12,900	13,100	14,000	16,000	
Beer, Wine & Liquor at \$700/sq. ft.	28,400	28,700	31,000	35,000	
Drugs & Patent Medicine* at \$1,000/sq. ft.	32,900	33,300	36,000	40,600	
Clothing at \$350/sq. ft.	69,700	70,600	76,000	86,000	
Shoes, Jewellery & Accessories at \$400/sq. ft.	17,700	18,000	19,500	25,000	
Home Furnishings at \$350/sq. ft.	10,600	10,900	11,400	13,100	
Electronics & Appliances at \$700/sq. ft.	21,000	21,300	23,000	26,000	
Furniture at \$300/sq. ft.	28,700	29,000	31,000	35,000	
Building Materials, Hardware & Garden Supplies at \$250/sq. ft.	101,200	102,400	110,400	122,000	
Sporting Goods, Hobbies, Music & Books at \$300/sq. ft.	29,700	30,000	32,700	36,700	
Used, Recreation & Other Vehicles at \$1,000/sq. ft.	13,900	14,100	15,200	17,100	
New Car Sales at \$2,000/sq. ft.	41,100	41,700	45,000	50,700	
Auto Parts & Accessories at \$1,500/sq. ft.	3,800	3,900	4,300	4,600	
Gasoline & Service Stations at \$1,200/sq. ft.	33,200	33,500	36,200	40,700	
General Merchandise at \$350/sq. ft.	79,400	80,300	86,900	98,000	
Department Stores at \$250/sq. ft.	85,200	86,000	92,800	104,800	
Other Retail Stores at \$300/sq. ft.	35,000	35,500	38,300	34,000	
Subtotal: Retail Products at \$559/sq. ft.	764,000	733,400	834,400	941,600	
B. Retail Service Businesses					
Restaurants, Bars & Other Eateries at \$600/sq. ft.	61,500	62,200	67,200	75,800	
Personal Car Businesses at \$225/sq. ft.	28,400	28,900	31,100	34,700	
Sports, Recreation & Entertainment ¹ at \$250/sq. ft.	173,600	175,600	190,000	214,000	
Subtotal: Retail Services at \$329/sq. ft.	263,500	266,700	288,300	324,500	
Grand Total: All Stores & Businesses at \$500/sq. ft.	1,027,500	1,101,100	1,122,700	1,266,100	

¹ Includes cinemas, theatres, arenas and sports fields.

² It should also be noted that the sales per sq. ft. per year as well refer to the year 2018; i.e., both per capita spending and sales per sq. ft. refer to 2018. Therefore, the estimates of supportable additional floor space are consistent with the 2018 trends, which were normal, and expected to return from 2022.

Source: Shore-Tanner & Associates.

Table 7.2Estimated Demand For Additional Floor SpaceBy the Spending of Clarence-Rockland Residents			
Time Period	Floor Space (sq. ft.)		
2021–2023	73,600		
2023–2026	21,600		
2026–2031	143,400		
2021–2031	238,600		

Source: Shore-Tanner & Associates.

VIII. SUMMARY OF EXISTING BUSINESSES

A. Review of Businesses

In June and July 2021, we drove on the streets of Rockland to observe the impacts of the pandemic. We have a list of Rockland's retail and service businesses as of May 2018 (Appendix A). Also, in 2002–2003, we had carried out a detailed retail market demand study on behalf of the City of Clarence-Rockland and have its detailed inventory as of then. As well, in February and March of 2021, we carried out a residential market demand study for one of the developers in Morris Village, and noted that there was no retail or service businesses in this Village. As of May 2018, there was a total of 146 retail and service businesses in Rockland with a total of approximately 538,000 sq. ft. At that time, only 14 of the stores, with a total floor space of 29,200 sq. ft. or 5.4%, were vacant (Appendix A).

In the summer of 2021, the number of known vacant stores had increased to more than 25 (in addition, some stores were vacant but had no For Lease signs). There were also some business changes, without significant changes in their previous sizes.

We are certain that the number and floor size of the vacant stores are on the decline now, and that Rockland's retail industry is recovering from the worst of the pandemic. **The present (December 2021) occupied retail floor space is still lower than in 2018.** It may take up to one or more years before the total occupied floor space reaches the 500,000 sq. ft. mark. For the purposes of this study (and to avoid over-estimation of supportable retail floor space), we assume that the total occupied retail and service floor space in Rockland is approximately 500,000 sq. ft. as of September 2021.

B. Supportable Additional Floor Space

As demonstrated in Table 6.2, the spending of the residents of Clarence-Rockland can support a total of 1.266 million sq. ft. of space by 2031 or an additional 766,000 sq. ft. However, there are no department stores, or a number of other traditional or box stores in Clarence-Rockland. As well, a large number of the working residents of Clarence-Rockland actually work in the City of Ottawa, or elsewhere. As a result, the residents of Clarence-Rockland and the rest of PRUC will most likely continue to shop at stores in Ottawa, and elsewhere for some of their needs/desires.

As Clarence-Rockland's population increases, and becomes more diversified, more floor space than the current 500,000 sq. ft. would be supportable. The addition of new retail and service businesses in Clarence-Rockland can also potentially attract customers from Orleans and other parts of the City of Ottawa.

The main conclusion of this review is, therefore, as follows:

As/if the residents of Clarence-Rockland shop more locally, more retail floor space, up to 238,600 sq. ft. by 2031, would be locally supportable.

The following is a description of the existing retail inventory of 2018 which is valid as of September 2021 as well.

C. Scope of Research

Several days in May 2018 we carried out extensive field research in Rockland. Every retail and service business was visited, its name and type identified, and its size visually estimated.

The field research was started at the Smart Centre, then continued on Laurier Street in the eastern direction to Highway 17. From there, all businesses in the western direction to Laurier Street were visited. There are a few scattered businesses on the intersecting roadways which were also visited, and their names, types, and estimated sizes recorded. The details of this research are presented in Appendix A.

D. Major Findings

As of May 2018, there was a total of 146 retail and service businesses in Rockland occupying an estimated 538,000 sq. ft. of floor space.

With the 2018 population of 26,746 in Clarence-Rockland, the overall average floor space per resident is 20.1 sq. ft. However, some of this space is supported by the spending of the other residents of the UCPR. Therefore, the effective floor space per resident is lower than 20.1 sq. ft. There are as well, a number of retail and service businesses in the Clarence part of the City of Clarence-Rockland and they may increase the per capita floor space to 21 or 22 sq. ft.

Based on the industry standard of 30 to 40 sq. ft. of floor space per capita, it is evident that the City of Clarence-Rockland is currently under-stored for retail and service businesses.

If the residents of Clarence-Rockland spend 100% of their shopping dollars at businesses within the City, still more floor space could be supported in 2018, and still more in future years. Due to the proximity of Ottawa and its variety of businesses, there will always be some shopping there by the residents of Clarence-Rockland. However, as its population grows, more retail and service businesses can be supported and will be attracted to Clarence-Rockland (as it has been the case in the 10-15 years).

At present, a total of 14 stores with a combined floor space of 29,200 sq. ft. or 5.4% of the total space of 538,000 sq. ft., are vacant in Rockland (industry standard vacancy rate is within 4% and 8%).

IX. OFFICE MARKET DEMAND ANALYSIS

A. Overview of Office Market

In Clarence-Rockland, as in similar cities in size close to major urban areas, there is little office space, and not much data available. The existing space is almost entirely for local needs such as medical, insurance, and financial. To better address the supportable office space on the Subject Site, we have first analyzed Ottawa's rich office market.

Due to the presence of the Federal Government, the City of Ottawa's office market is unique. The various Federal Departments, Crown Corporations, and other government agencies own and occupy approximately 30 million sq. ft. of office space.

The privately-owned office space in the City of Ottawa is approximately 41 million sq. ft., most of which is also rented to and occupied by different Federal Government organizations. There are, as well, some 300 associations, major legal, accounting, auditing and consulting firms, most of whose work is government related.

At a total population of slightly more than one million, the City of Ottawa is the fourth largest in Canada, but its total office floor space of approximately 71 million sq. ft. is the third largest after Toronto and Montreal.

The Ottawa office market has historically been strong and stable. In the last five years, a number of new, large office towers have been developed, pushing its overall total vacancy rate close to 11%, then declining to under 10% in 2019. Due to the Covid-19 pandemic since early 2020, the office vacancy rate has again exceeded 10%.

B. Types of Office Space

Generally speaking, office spaces fall into the following categories:

- Government/Public Sector
- Corporate
- Professional
- Business

There is some overlap in the bottom three types.

A **Corporate** office is usually large, high quality, located in a Class A building in a prime location, and occupied by banks, insurance companies, other major and often national and/or international corporations. Prestige, visibility, luxury, access, status, and image are important for corporate occupants of this type of office space.

A **Professional** office can be of various sizes and locations, and mostly in a Class B or C building. Legal, accounting, medical, high technology, artificial intelligence, associations, and consultancies are typical occupants of this type of space. In terms of prestige, status, visibility, and access, this type of office is often between the corporate and the business types.

A **Business** office is typically small, occupied by locally-oriented companies, located in affordable areas, including business parks, and in Class B, C or lower buildings. Engineering, architectural, accounting, development, construction, transportation, retail, and other such businesses, mostly with up to about 10 employees, are typical occupants of this type of office space.

C. Most Important Office Space on the Subject Site

Government, and to some extent, Corporate offices, are not dependent on the economy or population of a city. Most professional and business office enterprises, however, serve the residents and local economy of a given area. We believe that for the Subject Site, the most market viable types of office businesses would be those that serve the larger area residents, and ones which would be used for and by knowledge-based enterprises. While government, corporate, or any specialty type office developments are also possible, they cannot be counted on.⁶

D. Demand Analysis

1. Locally-Oriented Office Space

Of the approximately 41 million sq. ft. of privately-owned office space in the City of Ottawa, we estimate that up to 8 million sq. ft. or almost 20.0% are used by professional and business tenants who primarily serve the residents and the local

⁶ The need for them is not locally or even city-wide generated. However, elected officials, business leaders, and/or connections may be able to influence the locational decisions of government and corporate officials.

economy.⁷ These tenants, furthermore, are in Class B, C or lower buildings. The rest are occupied by various levels of governments, corporate, and prestigious professional/high technology tenants.

At 8 million sq. ft. of office space and a total City of Ottawa population of almost one million, the overall average office space associated per resident is about 8 sq. ft. Of course, parts of Ottawa have much higher, and others much lower averages.

In Clarence-Rockland, the total inventory of office space is now almost 0.3 million sq. ft., or approximately 11 sq. ft. per resident, based on a total population of over 27,400 (Table 4.3). Due to the mostly rural and agricultural characteristics of PRUC, its need for office space per capita is much less, and office businesses in Rockland tend to be used by its residents and employees. We have, therefore, used an estimate of 6 sq. ft. for PRUC. The Trade Area is, therefore, concluded to generate an average annual demand for total additional office space of up to 8,000 sq. ft. in Clarence-Rockland, and 3,500 sq. ft. in the rest of PRUC, (i.e., total of up to 11,500 sq. ft.).

2. Digital Age Office Space

Office space used for/by knowledge-based (i.e., Information Technology, Digital-Oriented, Health Care, Software Engineering, Life Sciences, and other modern industries) are economically most desirable for now and the future. **The products of these industries can be marketed and sold internationally. They are typically high-paying, and provide many spin-off jobs, services and incomes.**

The creation of these modern business/industrial parks often requires funds, leadership and foresight by various levels of government, as well as private sector champions. When successful, however, these parks generate far more municipal, provincial and federal benefits than their costs.⁸ For the economic advancement and future prosperity of Clarence-Rockland and diversification of its economy, we strongly recommend undertaking the needed activities, and providing the

⁷ In other words, the combination of population and economic factors generate demand for 8 million sq. ft. of locally-oriented office floor space.

⁸ The Colonnade Business Park is an example of these municipal government initiatives: it is now occupied by a large variety of health, research & development, IT, other modern as well as traditional industries, and large retail showrooms. The municipal taxes paid by the businesses in the park have been a significant source of income for the City of Ottawa in the last few decades, and already more than paid back the City's initial investments.

necessary budget to develop a modern, scientific/technology-oriented business park on the subject land in the expansion area. The promotion of this park, and recruitment of tenants/buyers are recommended to follow shortly after the City's decisions to proceed with the creation of this park.

E. Office Space Recommendations

- 1. The existing estimated total office floor space of approximately 300,000 sq. ft. is too low for Rockland's future office industry advancements.
- 2. We recommend promoting Rockland for modern, knowledge-based industries such as IT and life sciences.
- 3. With a successful promotion of the above industries, we recommend a total of approximately 100,000 sq. ft. of additional office floor space in Rockland.
- 4. Being close to the City of Ottawa, the Subject Expansion Land is considered to be the best location in Rockland for new office space, in our opinion.
- 5. Most to all 100,000 sq. ft. of new office space are thus recommended to be on the Subject Expansion Land.

X. INDUSTRIAL MARKET DEMAND ANALYSIS

In this chapter, we have addressed issues related to employment of the working residents of Clarence-Rockland and PRUC by type, location and other characteristics. This information, along with trends in future jobs, provide useful clues to future demand for industrial lands. In this regard, it should be kept in mind that in the last 2-4 years, the price of industrial land, as well as rental rates for buildings on industrial lands in Ottawa have been increasing very rapidly. This trend is expected to continue, and one result of it is likely to be increased interest and demand for industrial land in areas within up to one hour drive from Ottawa.

A. Employed Labour Force

1. As of mid-2016 (the latest census), the total number of the working residents was (Table 10.1):

Clarence-Rockland	13,315
• PRUC	46,535

2. The 5 largest occupations of these working residents were:

Clarence-Rockland		PRUC		
Government	17.7%	Government	14.5%	
Retail	13.2%	Retail	14.1%	
Construction	12.7%	Healthcare	11.2%	
Education	8.7%	Education	8.2%	
Total	63.1%		59.0%	

- 3. The 5 largest occupations of the residents of Clarence-Rockland and PRUC are thus the same. In Clarence-Rockland, however, 6.3 and in PRUC, 5.9 in 10 of all of their working residents worked in these five occupations.
- 4. People's occupations do not change much in 5 years. The percentages in Table 10.1 are therefore valid today with minor changes.

B. Place of Work

- 1. Not all of the working residents of Clarence-Rockland or PRUC work within each of their respective areas. As well, some of the people who work in each of these two areas live elsewhere.
- 2. In Table 10.7, we have identified the places where the labour force of each area work: As noted:
 - a. Some 7,170 or 53.8% of the Clarence-Rockland, and 20,370 or 42.8% of the PRUC working residents work outside of their respective areas.
 - b. Depending on where those with no fixed work address work, the numbers of those who work and live in each area are:
 - Clarence-Rockland 4,095 to 5,699 or 30.5% to 42.9%
 - PRUC 20,050 to 23,555 or 45.5% to 53.5%
- 3. The data in Table 10.1 and 10.2, combined with our knowledge of PRUC indicate that:
 - a. The working residents of Clarence-Rockland are more mobile than the working residents of the rest of PRUC.
 - b. Most of those who work outside Clarence-Rockland or outside the rest of PRUC work in Ottawa.
 - c. While specific data for 3b above are not available, we believe that Federal Government, knowledge-based industries such as Information Technology, and Construction account for most of those who work in Ottawa, but live within PRUC.

C. Traditional Industrial Jobs

Traditional industrial jobs are typically land-intensive, are concentrated in the extraction of the earth's resources, storage, transportation, processing and manufacturing of the resources into products needed by households, businesses, and institutions. Many of these jobs require heavy machinery, the use of enormous amounts of energy, and transportation. However, they are the typical starting businesses in many new industrial parks.

Forestry, mining, quarrying, warehousing, transportation and construction yards require vast land areas, but little built floor space. Processing and manufacturing, as well, require

large land areas, but also some built floor space. Traditional industries generate very few jobs, and historically, a ratio of 20 jobs per acre of land has been used to estimate their job creation.

In Table 10.3, we have presented the number of the working residents who work in the main traditional industrial jobs. There are also other traditional industrial jobs, such as truck and boat storage and repair yards, included in the Other category in Table 10.3.

As noted in Table 10.3, in Clarence-Rockland a total of 2,596 or 19.5%, and in PRUC 9,868 or 20.6% of their entire labour force work in traditional industrial jobs.

D. Modern Industrial Jobs

- 1. Most of the traditional industries emerged approximately 250 years ago in England, and quickly spread into other Western countries.
- 2. Since about 1960, the need for some of these industries began to decline or be eliminated. More importantly, however, many of the extracting, processing, and manufacturing jobs started to be sent to Mexico, China and other low-wage countries.
- **3.** As traditional industries started to decline, service, and particularly knowledgebased industries started to grow, and now dominate the western as well as a number of Asian countries.
- 4. The new and expanding services have been primarily in the health, education, wellness, and cultural industries.
- 5. The knowledge-based industries include some of the above, but mostly the enormously large and all-encompassing Information Technology industry, dominated by companies such as Google, Microsoft, Twitter, Amazon, Apple and many other lesser known enterprises.
- 6. The new industrial jobs include software engineering, computer architectural designers, high-level soft and hardware programmers and designers, automation engineers, supply-chain designers, communication engineers, and other highly technical experts.

7. The IT industries apply to every aspect of life and economies, from agriculture, health and entertainment to manufacturing, business, military and space explorations.⁹

8. IT industries require very little land and generate incomparably more jobs than the traditional industries

- 9. While traditional industrial jobs will continue to exist, their number of employees, economic contributions and relevance will continue to decline. The IT industries, on the other hand, will continue to further dominate economies, industries and the quality of life.
- 10. In Clarence-Rockland, a total of 230, and in PRUC, 838 of the working residents are employed in the general IT industry jobs.

E. Employed Labour Force

Labour force figures by type of occupation are presented in Table 10.1 for Clarence-Rockland and PRUC. As noted:

- 1. There was a total of 13,315 working residents in Clarence-Rockland and 47,535 in PRUC in 2016 (Table 10.1).
- 2. The largest number of jobs for these residents were in Retail, Health Care, Construction, Government, Education, and Accommodation & Food Services. These occupations accounted for 7,035 or 52.8% in Clarence-Rockland and 26,615 or 56.0% in PRUC.
- 3. People's occupations do not generally change much in a few years. Therefore, we believe that the distribution of the working residents' occupations in 2021 is very close to those identified in Tables 10.1 and 10.2, with minor percentage fluctuations.
- 4. The majority of the working residents in Clarence-Rockland as well as in PRUC work in various service industries:

Clarence-Rockland	8,315 or	62.4% of total
• PRUC	25,970 or	54.6% of total

⁹ Of course, some of these tasks were being done prior to the dominance of the IT industries. It is the rapidly faster, and the new applications of IT which have dominated economies, and life in general.

- 5. Primary, Utilities, Manufacturing, Transportation, Warehousing, and Logistics are the main industries which are land intensive. These occupations account for only 1,340 or 10.0% in Clarence-Rockland and 7,410 or 15.6% in PRUC.
- 6. Many residents of Clarence-Rockland and PRUC work in Ottawa or elsewhere. The numbers and types of jobs within each of these areas is not known. Based on our knowledge of the towns and counties within a couple of hours' driving distance of Ottawa, we firmly believe that the number of jobs in these areas is smaller than the number of their respective labour force, and this is the main reason for the working residents of these areas to commute to Ottawa/elsewhere to work.

F. Growth Industries

- 1. In today's economy, major job growths are in various services, information technology, social media, automation, research & development, robotics, pharmacology, communication, and other knowledge-based and high technology industries. Typically, these industries are office-based.
- 2. Most manufacturing jobs, which are land-intensive, have either been transferred to Mexico, Asia and other low-wage countries, or simply disappeared by one of the above growth industries (e.g., music records, Kodak-type cameras).
- 3. Internet-based companies such as Ottawa's Shopify, and international companies such as Amazon, have been the fastest growth companies in recent years, and their future growth prospects are quite favourable. These jobs, again, are mostly office-based.

Various health, alternative medicine, leisure, recreational, cultural, sports, travel, wellness products and services have also been growing in popularity, and employing large numbers of people.

- 4. New, exotic, organic food items, unique restaurants, and ethnic recipes particularly, have become popular in about the last five years, creating an increasing number of small, friendly, attractive, and specialty businesses (e.g., Seed to Sausage in Ottawa and Chocolat Favouris in Gatineau). Many of the owners of these businesses are in their 20s and 30s, including some who have left their lucrative employment in Finance, IT or Government to open up their own businesses.
- 5. There is a large number of industries and businesses everywhere for the basic necessities of life. Banks, supermarkets, beauty salons, pharmacies, legal, financial,

insurance and most retail stores are among them. While there is innovation and modernization in these industries, they do not change significantly in their basic functions, and their growth depends simply on the growth of their market areas' population. These businesses are often in small shopping plazas, main-street or highway commercial locations.

- 6. As noted, other than manufacturing, utilities, farming and warehousing, industries/businesses function mostly in small retail stores, shopping plazas, and office buildings. Manufacturing, warehousing and other land-intensive industries have been on a declining course in the last 20+ years, and their future prospects are also dim. These declines, furthermore, have been negatively impacting Clarence-Rockland, PRUC, the City of Ottawa, Canada and other western industrial countries, and the future is likely to be even worse (i.e., further job losses, and thus declining demand for traditional and land-intensive industrial lands).
- 7. As part of the research for this study, we also reviewed an extensive report for the Town of Milton called:

Employment Land Needs Assessment Study by MHBC Planning and Watson & Associates, Dated October 13, 2016.

- 8. A number of key take-aways from this report are:
 - a) From "protection of land," the Town of Milton should move to "job creation."
 - b) Employment land uses should be more intensified and diversified, resulting in higher densities.
 - c) Employment nodes should be planned for the next 30 years.
 - d) The Town of Milton's economy is heavily dependent on manufacturing, warehousing and logistics industries, all of which are highly land-intensive.

G. Clarence-Rockland's Future Land Requirements

1. Land-Intensive Industries' Land Needs

- a. The estimated growth in the number of land-intensive jobs in Clarence-Rockland or PRUC is moderate. This is due to expected further declines in Manufacturing, and low growth in other land-intensive industries.
- b. The traditional estimate of land requirement for land-intensive industrial jobs is one acre per 20 employees. This number, however, can no longer be used in a valid way since land-intensive jobs will continue to decline, based on our knowledge.
- c. Industrial and business park lands are now best used for the new economy knowledge-based jobs, from the viewpoints of prosperity, diversity, and modernization.

2. Retail Commercial Land Needs

- a. Demand for commercial land for retail (e.g., clothing) and service (e.g., beauty salons) businesses is based on the number of residents and employees within the Trade Area of businesses.
- b. Based on the retail industry standards, the spending of/for every man, woman and child supports 30 to 40 sq. ft. of retail and service businesses in urban areas (less in rural areas/small towns).
- c. In addition, employees often shop at businesses at or near their workplaces (coffee shops, restaurants, banks, food items, etc.). The spending of each employee is estimated to support up to 5 sq. ft. of commercial space at/near their place of work.
- d. Clarence-Rockland is a commercial hub for the residents of some of the nearby towns and villages. Its existing and future businesses, therefore, have a larger Trade Area than only Clarence-Rockland by itself.
- e. The 30 to 40 sq. ft. of supportable space per resident includes department stores, furniture stores, specialty retail, ethnic restaurants, and various box stores. Department stores, and a number of other businesses require well over 100,000 residents, and therefore do not exist in Clarence-Rockland now, and likely not in the future either.

- f. Under the generous assumption of 30 sq. ft. of retail and service floor space per resident, and an estimated population of 27,400 in 2021, the total supportable retail and service floor space in Clarence-Rockland is 822,000 sq. ft. This number is much larger than the approximately 500,000 sq. ft. of the existing floor space.
- g. Retail development normally takes place on one-quarter of commercial land (the rest is for various setbacks, and especially for surface parking).
- h. The estimated additional supportable floor space of 238,600 sq. ft. would thus need 954.400 sq. ft. of land or approximately 21 acres by 2031.
- i. Of course, more commercial developments will be needed after 2031, due to continued population growth. Since the nearby villages and towns will also grow in population, and thus likely to add to their own existing retail businesses, they will not need to shop as much in Clarence-Rockland as they do now.

3. Office Land Needs

- a. Most if not all of the following jobs usually require office space, including in industrial/business parks:
 - Information & Culture
 - Finance & Insurance
 - Real Estate
 - Professional, Scientific & Technical
 - Management
 - Administration & Support
 - Health Care & Social Services
 - Public Administration
- b. Some of the above office jobs are in buildings in business or industrial parks, and parts of others are in more than one industry/business (e.g., some Administration & Support jobs are in retail, restaurants and health care). To avoid double counting, we have included all of the above in office jobs.
- c. The industry standard office space per employee is 200 to 300 sq. ft.
- d. The portion of vacant land which can be built for one-storey office buildings is about 50%. The total amount of vacant commercial land for 8,000 sq. ft. of office space per year would thus be 16,000 sq. ft., plus land for parking (160,000 sq. ft. for the period 2021-2931)..
- e. One-storey office buildings are not efficient or economical. Even in many business/industrial parks, developers build two or three-storey office buildings.

f. From the perspectives of economic growth, prosperity and attraction of modern/21st Century industries, the best use of the subject industrial land in Clarence-Rockland is thus knowledge-based jobs, especially those in the digital industries.

4. Recommended Industrial Park

- a. At 90 acres, the Expansion Land is large and can accommodate a combination of the old and new industries.
- b. The new, modern, knowledge-based industries are mostly in office buildings, including some in industrial/business parks.
- c. From the perspective of economic growth and future prosperity of the City of Clarence-Rockland, the best jobs in the Expansion Land would be IT, digital, and life science industries.
- d. In view of the increasing industrial land prices in the City of Ottawa, the resulting shortages and the adjacency of the City of Ottawa, some of the Expansion Land can be quickly used by the land-intensive industries in Ottawa who want to move out, but still be close to Ottawa.

Table 10.1Occupations of Working Residents: 2016					
Occupation Categories	Clarence-R	UC			
	No.	%	No.	%	
Agriculture, Forestry, Fishing & Hunting	250	1.9	1,740	3.7	
Mining, Quarrying, and Oil & Gas Exploration ¹	15	Neg.	95	0.2	
Utilities ¹	40	0.3	150	0.3	
Construction ¹	1,695	12.7	5,230	11.0	
Manufacturing ¹	470	3.5	3,160	6.6	
Retail Trade	1,760	13.2	6,700	14.1	
Transportation & Warehousing ¹	565	4.2	2,265	4.8	
Information & Culture	185	1.4	590	1.2	
FIRE ²	495	3.7	1,870	3.9	
Professional & Scientific	580	4.3	2,095	4.4	
Administrative & Support	745	5.6	2,075	4.4	
Education	1,155	8.7	3,900	8.2	
Health Care	1,435	10.8	5,345	11.2	
Arts & Entertainment	185	1.4	775	1.6	
Accommodation & Food	700	5.2	2,440	5.1	
Government (all levels)	2,355	17.7	6,900	14.5	
Other	685	5.1	2,205	4.6	
Total	13,315	100.0	47,535	100.0	
Industrial-Type	2,785	20.9	10,900	22.9	

¹ Industrial

²Finance, Insurance & Real Estate

Source: Shore-Tanner & Associates based on the 2016 census data.

Table 10.2Place of Work of the Working Residents: 2016						
Locations Clarence-Rockland PRUC						
	No.	%	No.	%		
At Home	845	6.3	3,435	7.2		
Within Each Area	3,200	24.0	16,615	34.9		
Outside	6,650	49.9	17,900	37.6		
Other Province(s)	510	3.8	2,395	5.0		
Outside Canada	10	Neg.	75	0.2		
No Fixed Work Address	1,654	12.4	3,610	7.6		
Not Working	446	3.3	3,505	7.4		
Total 13,315 100.0 46,535 100.0						

Note:

In	Clarence-Rockland,	a total of 10,645	or 82.7%, and in	PRUC, a total	l of 38,470 or
87	.4% of all working re	sidents used cars,	vans or trucks to	go to their plac	es of work.

Source: Shore-Tanner & Associates based on the 2016 census data.

Table 10.32016 Labour Force By Selected Industrial Occupations						
Industrial Occupations	Clarence-Rockland PRUC					
	No.	%	No.	%		
Forestry ¹	25	1.0	174	1.8		
Mining & Quarrying	15	0.6	95	1.0		
Utilities	40	1.5	150	1.5		
Construction	1,695	65.3	5,230	53.0		
Manufacturing ² & Processing	188	7.2	1,264	12.8		
Transportation & Warehousing	565	21.8	2,265	2.4		
Other ³	68	2.6	690	7.0		
Total	2,596	100.0	9,868	100.0		

¹Estimated at 10% of Agriculture, Forestry, Fishing & Hunting category.

²Estimated at 40% of Manufacturing category.

³Estimated at 10% of Other category.

Source: Shore-Tanner & Associates based on the 2016 census data.

APPENDIX A

List of Retail and Service Businesses In Rockland			
Business Name	Туре	Approximate Size (sq. ft.)	
Smart Centre ¹			
Rona	Hardware	40,000	
Walmart	Department Store	110,000	
• Quizno Subs			
• Hair Salon			
• Pharmacy			
• Garden Supplies			
• Grocery			
• Fashion			
Source	Electronics	2,000	
Bulk Barn	Specialty Food	3,000	
Boston Pizza	Table Service Restaurant	4,000	
Dollarama	General Merchandise	6,000	
LBCO	Liquor Store	3,000	
Laurier Street			
Ford Dealership	Automotive	6,000	
Snap Fitness	Fitness	3,000	
Tim Horton's	Coffee Shop	1,800	
Royal Plaza (on Laurier St.)			
Vapeking	Smoke Shop	2,000	
Aqua Life	Sporting Goods	2,000	
Rosalynn's	Table Service Restaurant	2,000	
New Wave (pool accessories)	Sporting Goods	2,500	
RBC	Financial	3,000	
Vacant (2)	Vacant	4,000	

¹ Started from this shopping centre, walked and/or drove eastward on Laurier Street to Highway 17, then westward on Laurier Street

List of Retail and Service Businesses In Rockland, continued			
Business Name	Туре	Approximate Size (sq. ft.)	
Laurier Street, continued			
First Choice	Barber	1,000	
Rockland Sports	Sporting Goods	3,000	
M&M Foods Market	Specialty Foods	1,500	
Shawarma Rockland	Table Service Restaurant	1,500	
Youngster Salon	Beauty Salon	1,500	
Hitices	Clothing	1,500	
La Bella Salon	Beauty Salon	1,500	
Accent	Furniture	8,000	
Touch of Distinction	Flooring Supplies	2,000	
Rising Sun	Martial Arts	2,000	
Vitrerie Glass & Mirror	Furnishings	2,000	
Derma Skin Care	Beauty Salon	1,500	
Vacant	Vacant	1,500	
Domino's Pizza	Pizza Shop	1,500	
Mortgage Intelligence	Financial	1,500	
Chiro Fashion	Specialty Retail	1,500	
Rockland Pharmacy	Pharmacy	3,000	
Pronature Sporting	Sporting Goods	2,000	
Tiny Hopper	Daycare	2,500	
Salon Tete O Pieds	Beauty Salon	1,500	
Shoppers Drug Mart	Pharmacy	4,000	
Ultramar	Gas Station & Car Wash	2,000	
Your Independent Grocer	Supermarket	50,000	
Spartas	Mediterranean Restaurant	1,500	
Scotiabank	Financial	3,000	
Beer Store	Beer Store	3,000	
Napa Auto	Automotive	2,500	
McDonald's	Fast Food	2,200	
Sullyteck	Phone Repair	600	
Bytown Lumber	Building Supplies	10,000	
The Thimble	Tailor	800	
Envy	Spa	2,000	
Vacant	Vacant	3,000	
Jumbo Pizza	Pizza Shop	2,000	

List of Retail and Service Businesses In Rockland, continued			
Business Name	Туре	Approximate Size (sq. ft.)	
Laurier Street, continued			
Dunn's Deli	Table Service Restaurant	2,500	
Rama	Martial Arts	1,200	
Royal Photo	Photo Shop	1,500	
Rockland Music	Specialty Retail	1,500	
Anne Travel	Travel Agency	1,500	
Martel Mortgage	Financial	1,000	
Sublime Salon	Beauty Salon	1,000	
Christine Raymond Salon	Beauty Salon	1,000	
Auto Morin	Automotive	3,000	
Sienna Faming	Specialty Retail	2,000	
Sacred Art	Tattoo Shop	1,000	
The Brunet Funeral	Funeral Services	3,000	
L'Atelier Salon	Beauty Salon	2,000	
Vacant (several stores)	Vacant	5,000	
Rockland Pizza	Pizza Shop	1,200	
H & R Block	Financial	1,200	
Rockland Variety	Convenience Store	1,500	
Vacant	Vacant	1,500	
Jean Coutu	Pharmacy	4,500	
Post Office	Specialty Retail	2,000	
Vacant	Vacant	1,500	
Rockland Marine	Boating Supplies	3,000	
Giant Tiger	General Merchandise	11,000	
Fashion Sports	Clothing	2,000	
New Ruby	Chinese Restaurant	3,000	
Second Hand Centre	Clothing	1,500	
Modelo Salon	Beauty Salon	1,500	
Dalrymple Salon	Beauty Salon	1,500	
Subway	Fast Food	1,500	
Marie-Jo	Table Service Restaurant	2,000	
RDS Laundromat	Laundromat	1,200	
Chamberland Garage	Automotive	5,000	
Rockland Optometry	Specialty Retail	2.000	

List of Retail and Service Businesses In Rockland, continued				
Business Name	Туре	Approximate Size (sq. ft.)		
Laurier Street, continued				
Rockland Barber	Beauty Salon	600		
Bourbonnais Electric	Electronic Shop	1,500		
Vacant	Vacant	1,200		
Friendly Restaurant	Table Service Restaurant	2,000		
Big Boss Burgers	Table Service Restaurant	1,600		
Vacant	Vacant	1,500		
Sonx Plus	Electronics	1,500		
National Bank	Financial	3,000		
QV Spa	Beauty Salon	1,500		
DCV Heating/Cooling	Heating/Cooling Supplies	2,000		
Lavolette	Flower Shop	1,500		
Café Joyeux	Table Service Restaurant	1,500		
Desjardins	Financial	4,000		
Maison de Xin	Table Service Restaurant	4,000		
Spa Mauve	Beauty Salon	1,500		
Extravadance	Specialty Fashion	2,000		
Chez L'Bonlanger	Bakery	2,000		
Studio Aqua (bronzage)	Beauty Salon	1,500		
Main Street Pizza	Pizza Shop	1,500		
Vacant	Vacant	1,500		
Le Mieux	Convenience Store	1,500		
GAB Sports Bar	Table Service Restaurant	2,000		
Beautiful Clinic	Beauty Salon	1,500		
QV Spa, Nails	Beauty Salon	1,000		
Café La Roche	Table Service Restaurant	2,000		
Espada	Tattoo Shop	500		
Ryan's Auto	Automotive	2,000		
SS Chip Wagon	Eatery	200		
Vacant	Vacant	2,000		
Vacant	Vacant	2,000		
Belanger Dodge Dealer	Automotive	2,000		
Vacant	Vacant	3,000		
Harmony Hyundai	Automotive	2,000		
Mr. Gas	Gas Station	100		
Tim Horton's	Coffee Shop	1,000		
Canadian Tire Station	Gas Station	100		
TD	Financial	2,000		
Shell Station	Gas Station	100		
Circle K	Convenience Store	2,000		
List of Retail and Service Businesses In Rockland, continued				
--	--------------------------	----------------------------	--	--
Business Name	Туре	Approximate Size (sq. ft.)		
Plaza Rockland				
Top Mode Depot	Fashion	11,000		
A & W	Fast Food	1,800		
Pet Valu	Specialty Retail	2,500		
Brown Cleaner	Dry Cleaning	1,200		
Super Cut	Barber Shop	1,200		
Pop Shoes	Shoe Store	2,500		
Gabriel Pizza	Pizza Shop	1,200		
Broadway Bar & Grill	Table Service Restaurant	2,500		
Subway	Fast Food	1,500		
Vacant	Vacant	1,500		
Dollar Tree	General Merchandise	5,000		
TSC	General Merchandise	25,000		
Mark's	Clothing	10,000		
St. Hubert	Table Service Restaurant	3,000		
Oil Changer	Automotive	4,000		
Speedy Glass	Automotive	4,000		
Benson Auto Parts	Automotive	3,000		
Grand Total	146	538,000		

Source: Shore-Tanner & Associates based on field research and visual estimates in late May 2018.

Appendix B

Bowfin Desktop Environmental Impact Study

Secondary Plan - Rockland West

Background Review Summary

Prepared for:

J.L. Richards & Associates Limited 700 - 1565 Carling Avenue Ottawa, Ontario K1Z 8R1

Prepared by:

Bowfin Environmental Consulting Inc. 168 Montreal Road Cornwall, Ontario K6H 1B3

February 2022

List of Acronyms and Definitions

- ABBO Atlas of Breeding Birds of Ontario
- ANSI Area of Natural and Scientific Interest
- BHA Butternut Health Assessments
- DBH Diameter at breast height
- DFO Fisheries and Oceans Canada
- EIS Environmental Impact Study
- ELC Ecological Land Classification
 - CUT Cultural Thicket
 - FOD Deciduous Forest
 - FOM Mixed Forest
- ESA Endangered Species Act (Provincial)
- GPS Global Positioning System
 - NAD 83: North American Datum 1983
 - UTM: Universal Transverse Mercator
- LIO Land Information Ontario
- NHIC Natural Heritage Information Centre
- NHRM Natural Heritage Reference Manual
- MTO Ministry of Transportation Ontario
- OMNR/MNRF/NDMNRF Ontario Ministry of Natural Resources (old name)
 - -Ministry of Natural Resources and Forestry (old name)
 - -Ministry of Northern Development, Mines, Natural Resources, and Forestry (new name)
- OP Official Plan
- OWES Ontario Wetland Evaluation System
- PPS Provincial Policy Statement
- PSW Provincially Significant Wetland
- SAR Species at Risk (in this report they refer to species that are provincially or federally listed as endangered or threatened and receive protection under ESA or SARA)
- SARA Species at Risk Act (Federal)
- SARO Species at Risk in Ontario
- SNC South Nation Conservation
- SWH Significant Wildlife Habitat
- SWHCS Significant Wildlife Habitat Criteria Schedules for Ecoregion 6E
- SWHTG Significant Wildlife Habitat Technical Guide
- UCPR United Counties of Prescot and Russell

SRANK DEFINITIONS

- **S1** Critically Imperiled in the nation or state/province because of extreme rarity (often 5 or fewer occurrences) or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the state/province.
- **S2** Imperiled in the nation or state/province because of rarity due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors making it very vulnerable to extirpation from the nation or state/province.

- **S3** Vulnerable in the nation or state/province due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors making it vulnerable to extirpation.
- **S4** Apparently Secure; uncommon but not rare; some cause for long-term concern due to declines or other factors.
- **S5** Secure; Common, widespread, and abundant in the nation or state/province.
- ? Inexact Numeric Rank—Denotes inexact numeric rank
- **SNA** Not Applicable, A conservation status rank is not applicable because the species is not a suitable target for conservation activities.
- S#B Breeding
- S#N Non-Breeding

SARA STATUS DEFINITIONS

- **END** Endangered: a wildlife species facing imminent extirpation or extinction.
- **THR** Threatened: a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.
- **SC** Special Concern, a wildlife species that may become threatened or endangered because of a combination of biological characteristics and identified threats.

SARO STATUS DEFINITIONS

- **END** Endangered: A species facing imminent extinction or extirpation in Ontario which is a candidate for regulation under Ontario's ESA.
- **THR** Threatened: A species that is at risk of becoming endangered in Ontario if limiting factors are not reversed.
- **SC** Special concern: A species with characteristics that make it sensitive to human activities or natural events.

Coefficient of Conservatism Ranking Criteria

- 0 Obligate to ruderal areas.
- 1 Occurs more frequently in ruderal areas than natural areas.
- 2 Facultative to ruderal and natural areas.
- 3 Occurs less frequent in ruderal areas than natural areas.
- 4 Occurs much more frequently in natural areas than ruderal areas.
- 5 Obligate to natural areas (quality of area is low).
- 6 Weak affinity to high-quality natural areas.
- 7 Moderate affinity to high-quality natural areas.
- 8 High affinity to high-quality natural areas.
- 9 Very high affinity to high-quality natural areas.
- 10 Obligate to high-quality natural areas.

Table of Contents

1.0	INTRODUCTION	6				
2.0	METHODS					
2.1	Study Area					
2.2	Background Review					
3.0	BACKGROUND INFORMATION					
3.1	Location					
3.2	Review of Official Plans and Provincial Mapping of Natural Heritage	Features 10				
3.3	Desktop Review of Vegetation Communities	14				
3.4	Fish Habitat and Fish Communities					
4.0	REVIEW OF NATURAL HERITAGE FEATURES					
4.1	Endangered and Threatened Species					
4.1	1 Species Discussion					
4.1	2 SAR Conclusion					
4.2	Fish Habitat					
4.4	Areas of Natural and Scientific Interest					
5.0	CONSTRAINTS and OPPORTUNITIES					
7.0	REFERENCES	40				
Appendix	A: Background Information					
List of Fig	gures					
Figure 1:	General Location of Study Area					
Figure 2:	Study Area Detail	9				
Figure 3:	Figure 3: Official Plan Schedule A (City of Clarence-Rockland) 12					
Figure 4:	Official Plan Schedule B (United Counties of Prescott and Russell)					
Figure 5:	Desktop Vegetation Community Analysis					
Figure 6:	Background Fish Community and Habitat					
Figure 7: 1	Potential Fish Habitat					
Figure 8:	igure 8: Constraints and Opportunities					

List of Tables

Table 1: Summary of Available Background Information on the Identified Natural Features	
(PSW, Woodlands, Valleylands, ANSIs, ESA, SWH, and Fish Habitat)	. 11
Table 2: Background Fish Community Information from LIO Databases	. 18

Table 3: Summary of Potential SAR	. 30
Table 4: ANSI Information	. 35

1.0 INTRODUCTION

The City of Clarence-Rockland is completing a Secondary Plan for lands situated to the west of Rockland. The Secondary Plan would be adopted as an amendment to the Urban Area of the City of Clarence-Rockland's Official Plan. The process is to be integrated with the Class Environmental Assessment (EA) which is required in the planning of infrastructure and environmental management.

The goals of the Secondary Plan includes addressing natural heritage features and systems. To this end, Bowfin Environmental Consulting (Bowfin) was engaged by J.L. Richards & Associates Limited to provide a review of known natural heritage features and to identify opportunities, constraints, or areas with issues that could be addressed through this process.

The study area is approximately 36 ha situated on parts of Lot 32-34, Concession 1, in the City of Clarence-Rockland. It is bordered by Highway 17 and the Ottawa River to the north, agricultural land to the south and west, and commercial area to the east (Figure 1 and Figure 2). A majority of lands have been cleared for either agriculture or development and there is an unnamed feature which flows into the Ottawa River (Figure 2).

Bowfin's review considered natural heritage features that would be protected under the *Planning Act, Endangered Species Act, Fish and Wildlife Conservation* Act, *Species at Risk* Act, and *Fisheries Act.* The natural features and areas are those as set out in the Provincial Policy Statement (PPS) (MMAH, 2020) in which there are several natural features and areas identified as needing protection. These are:

- Significant habitat of Endangered and Threatened Species (SAR);
- Significant wetlands;
- Significant coastal wetlands or coastal wetlands;
- Significant valleylands;
- Significant woodlands;
- Significant wildlife habitat;
- Significant Areas of Natural and Scientific Interest; and
- Fish habitat.

This Secondary Plan will also reference the locations of significant features along with other locally significant features (identified as part of the regions' Natural Heritage System) as identified on OP schedules A of the City of Clarence Rockland and B of the United Counties of Prescott and Russell. To protect the species and their habitats, the presence/absence of habitat for endangered (END) or threatened (THR) species are not depicted on the OP schedules. The habitat of endangered or threatened species must be determined based on the criteria outlined in

provincial guidance documents and is species-specific. The UCPR have identified all Significant Wildlife Habitat (SWH) found within the settlement areas. These are either deer wintering area or wildlife travel corridor.

The following report provides a summary of our review and a desktop assessment of the functions and values of the natural features on site. This is followed by our recommendations for natural heritage constraints and identification of natural heritage opportunities for consideration.

Figure 1: General Location of Study Area

Figure 2: Study Area Detail

2.0 METHODS

2.1 Study Area

For the most part, the OP calls for an evaluation of the study area and the adjacent 120 m. This is widened when analysing the potential for species at risk (SAR) as their protected habitats vary with the species being considered.

2.2 Background Review

Information presented in the Clarence-Rockland and the United Counties of Prescott and Russell Official Plans was reviewed along with information collected from outside sources. The goal was to help inform the functions of known or potential features. Outside sources included: Natural Heritage Information Centre (NHIC) database, iNaturalist, Atlas of Breeding Birds of Ontario (ABBO), Fisheries and Oceans Canada (DFO) Aquatic Species at Risk Mapping, Make-a-Map Land Information Ontario (LIO), and LIO databases. Information from personal knowledge and observations of the area for other unrelated projects has also been included as appropriate.

3.0 BACKGROUND INFORMATION

3.1 Location

These lands are situated of South of Highway 17, just west of Poupart Road. It is in part of Lot 32-34, Concession 1 (O.S), in the City of Clarence-Rockland (centroid - UTM 18T 475630 m E; 5042010 m N, and Latitude 45.53169 Longitude -75.31147). It is bordered by Highway 17 and the Ottawa River to the north, agricultural land to the south and west, and commercial area to the east.

3.2 Review of Official Plans and Provincial Mapping of Natural Heritage Features

The schedules associated with the Clarence-Rockland Official Plan Schedule A and UCPR Official Plan Schedule B do not identify any natural features within the study area. They do note the following within the <u>adjacent lands</u>:

- Fish habitat 60 m north of County Road 17, along the Ottawa River
- Candidate: Life Sciences ANSI Baie Lafountaine Islands 30 m north along County Road 17, in the Ottawa River.
- Significant woodlands 20 m south-west.

No other significant natural features are noted on the schedules, in or within 120 m of the site.

Further afield, UCPR Schedule B identifies a wildlife travel corridor (1 km south), wintering area, and provincially significant wetland (Baie Lafountaine) (290 m to the north).

Table 1: Summary o	f Available I	Background	Information	on the Ider	ntified Natural	Features
(PSW, Woodlands, V	Valleylands,	ANSIs, ESA	, SWH, and	Fish Habit	at)	

Natural Heritage	Present within Site	Present within	Additional
Feature	i resent within Site	120 m of Site	Notes
Provincially Significant			Baie
Wetlands (PSW)	Ν	0	Lafountaine
			(290 m north)
Areas of Natural and		Baie Lafountaine	
Scientific Interest	No	Islands, Candidate	None
(ANSIs)		ANSI, Life Sciences	
		(30 m north)	
Habitats or species	Potential for endangere	d or threatened species	
designated by ESA	needs to be determined	following assessment of	None
(Provincial)	the suitable habitats in	n or near the site. See	
, , , , , , , , , , , , , , , , ,	section 5 of this report		
		Schedule B identifies	
Significant Woodlands	No	significant woodlands	None
	20 m southeast of site		
Significant Valleylands	None identi	ified on OP	None
	UCPR indicates none (settlement area as such	
Significant Wildlife	no site specific review n		
Habitat (SWH)	proce	None	
	City of Clarence-Rockla		
	an		
	There is one unnamed		
	feature to the Ottawa		
	River, with several		
	branches extending		
	into the Study Area as	Ottawa River 70 m	
Fish Habitat	well as a pond. These	north	None
	along with any other	nortin	
	aquatic feature (natural		
	or artificial) are		
	assumed to be fish		
	habitat.		

Figure 3: Official Plan Schedule A (City of Clarence-Rockland)

Figure 4: Official Plan Schedule B (United Counties of Prescott and Russell)

3.3 Desktop Review of Vegetation Communities

Since this was completed via a desktop review it is difficult to distinguish between very young forests or woodlands and thickets. That distinction is based on the species of woody vegetation, where tree species (any age, including seedlings) providing 35-60% cover would be woodland and those with 60% or more cover would be classed as forest. Whereas habitats that did not contain trees (of any ages) but had more than 25% cover by shrub species would be cultural thickets.

The study area is primarily agricultural fields and developed. In the center of the study area there appears to be cultural thicket community bordered by mixed forest to its north and deciduous forest to its south. A small pond feature is seen on images, immediately east of the private laneway, in the cultural thicket. Another cultural thicket could be present on the southeast corner of the study area which surrounds a deciduous forest then extends into the adjacent lands (Figure 2).

Figure 5: Desktop Vegetation Community Analysis

Deciduous Forest

Community 1

This community has a small section on the southeast side of the site and the adjacent lands but extends offsite covering an area of 120 ha. The satellite imagery suggests a closed-canopy deciduous forest dominates the site. The general feel was for a deciduous forest that provided 80% canopy cover. Much of this community forms part of the Significant Woodland as shown on the OP schedules.

Mixed Forest

Community 2

This small mixed forest is surrounded by agricultural land to the east and cultural thicket on the north, south, and west. It is entirely within the Settlement Area and appears to be separated from the above discussed Significant Woodland by a Cultural Thicket. This little community is estimated to be 1.1 ha in size. The tree canopy appears to provide around 70% canopy cover. Being within the Settlement Area, it is not part of the Significant Woodland layer.

Community 3

This narrow 2.2 ha community borders the Highway 17 to the north and Community 4 to the south. There is a single lot development immediately south of this community. On its western side is a mixed patch which is separated from the eastern side by a driveway. On the east is a narrow strip of conifers along the north separated from a patch of deciduous trees to the south by an area cleared for power lines. The community is in the Settlement Area and is not part of a Significant Woodland. While narrow (width between 20 m and 85 m), the background mapping does show potential fish habitat travelling through this community as such the vegetation may provide buffer to fish habitat.

Cultural Thicket

Community 4

This 4.8 ha community runs down the center of the site between agricultural fields. It has coniferous hedgerows on its eastern and western edges with patchy shrub cover in between. There are a few pockets of what appears to be trees species (deciduous forest or cultural woodlands), but overall this appears to be an old agricultural field that is naturalizing. There is a pond and a fish habitat (watercourse) shown within this community in the OP schedules.

Community 5

This 7.0 ha cultural thicket community is on the southeastern edge of site. It borders agricultural fields to the northwest and deciduous forest to the southeast. Review of the satellite images for

the area notes this is also an old agricultural field that is naturalizing. It has been listed as a thicket but depending on the actual species may form part of a woodland or forest.

3.4 Fish Habitat and Fish Communities

As shown on Figure 6, the background review identified the Ottawa River and one unnamed feature flowing into the Ottawa River. LIO identified 75 species as occurring this section of the Ottawa River (Table 2).

There was no information available on the tributary (labelled as Unnamed Feature) to the Ottawa River's classification or its fish community.

The DFO National Aquatic Species at Risk Mapping (NASAR) also indicates that there are no recordings of federal endangered, threatened, or special concern in this area (Appendix A).

Species Name	Scientific Name	Trophic Class	Thermal Regime	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	Ottawa River	Reference
Northern Brook Lamprey	Ichthyomyzon fossor	nonfeeding, herbivore	cool	SNR	SC	SC	Y	LIO, 2018
Silver Lamprey	Ichthyomyzon unicuspis	Parasite, herbivore/ detrivore	cool	S 3	SC	SC	Y	LIO, 2018
American Brook Lamprey	Lethenteron appendix	nonparasitic filterer, adults do not feed, herbivore	cold	S 3			Y	LIO, 2018
Lake Sturgeon	Acipenser fulvescens	invertivore herbivore	cool	S2	END		Y	LIO, 2018
Longnose Gar	Lepisosteus osseus	carnivore	warm	S4			Y	LIO, 2018
American Eel	Anguilla rostrata	invertivore carnivore	cool	S1?	END		Y	LIO, 2018
Alewife	Alosa pseudoharengus	planktivore	cold	SNA			Y	LIO, 2018
American Shad	Alosa sapidissima	planktivore	cool	S 1			Y	LIO, 2018
Mooneye	Hiodon tergisus	invertivore	cool	S4			Y	LIO, 2018
Brown Trout	Salmo trutta	invertivore carnivore	cold/cool	SNA			Y	LIO, 2018
Cisco (Lake Herring)	Coregonus artedii	planktivore invertivore	cold	S5			Y	LIO, 2018
Rainbow Smelt	Osmerus mordax	invertivore carnivore	cold	S5			Y	LIO, 2018
Northern Pike	Esox lucius	carnivore	cool	S5			Y	LIO, 2018
Muskellunge	Esox masquinongy	carnivore	warm	S4			Y	LIO, 2018
Central Mudminnow	Umbra limi	invertivore	cool	S5			Y	LIO, 2018
Spotfin Shiner	Cyprinella spiloptera	invertivore herbivore	warm	S4			Y	LIO, 2018
Common Carp	Cyprinus carpio	invertivore detritivore	warm	SNA			Y	LIO, 2018
Cutlip Minnow	Exoglossum maxillingua	invertivore	warm	S1S2	THR	SC	Y	LIO, 2018
Brassy Minnow	Hybognathus hankinsoni	planktivore detritivore	cool	S5			Y	LIO, 2018
Eastern Silvery Minnow	Hybognathus regius	herbivore detritivore	warm	S 2	NAR		Y	LIO, 2018
Common Shiner	Luxilus cornutus	invertivore	cool	S5			Y	LIO, 2018

Table 2: Background Fish Community Information from LIO Databases

Bowfin Environmental Consulting Inc. February 9, 2022

Species Name	Scientific Name	Trophic Class	Thermal Regime	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	Ottawa River	Reference
Northern Pearl Dace	Margariscus nachtriebi	invertivore carnivore	cool	S5			Y	LIO, 2018
Golden Shiner	Notemigonus crysoleucas	invertivore herbivore	cool	S5			Y	LIO, 2018
Emerald Shiner	Notropis atherinoides	planktivore	cool	S5			Y	LIO, 2018
Blackchin Shiner	Notropis heterodon	invertivore	cool	S4	NAR		Y	LIO, 2018
Spottail Shiner	Notropis hudsonius	invertivore planktivore	cool	S5			Y	LIO, 2018
Rosyface Shiner	Notropis rubellus	invertivore detritivore herbivore	warm	S 4	NAR		Y	LIO, 2018
Sand Shiner Notropis stramineus invertivore detritivore		invertivore detritivore	warm	S4			Y	LIO, 2018
Mimic Shiner	Aimic ShinerNotropis volucellusinvertivore herbivorewarmS5		Y	LIO, 2018				
Northern Redbelly Dace	Chrosomus eos	invertivore planktivore	cool	S 5			Y	LIO, 2018
Finescale Dace	Chrosomus neogaeus	invertivore planktivore	cool	S5			Y	LIO, 2018
Bluntnose Minnow	Pimephales notatus	detritivore	warm	S5	NAR		Y	LIO, 2018
Fathead Minnow	Pimephales promelas	detritivore invertivore	warm	S5			Y	LIO, 2018
Western Blacknose Dace	Rhinichthys obtusus	invertivore	cool	S5			Y	LIO, 2018
Longnose Dace	Rhinichthys cataractae	invertivore	cool	S5			Y	LIO, 2018
Creek Chub	Semotilus atromaculatus	invertivore carnivore	cool	S5			Y	LIO, 2018
Fallfish	Semotilus corporalis	invertivore carnivore	cool	S4			Y	LIO, 2018
Longnose Sucker	Catostomus catostomus	invertivore	cold	S5			Y	LIO, 2018
White Sucker	Catostomus commersonii	invertivore detritivore	cool	S5			Y	LIO, 2018
Quillback	Carpiodes cyprinus	invertivore detritivore	cool	S 4			Y	LIO, 2018
Silver Redhorse	Moxostoma anisurum	invertivore	cool	S 4			Y	LIO, 2018
River Redhorse	Moxostoma carinatum	invertivore	cool	S2	SC	SC	Y	LIO, 2018

Species Name	Scientific Name	Trophic Class	Thermal Regime	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	Ottawa River	Reference
Shorthead Redhorse	Moxostoma macrolepidotum	invertivore	warm	S 5			Y	LIO, 2018
Greater Redhorse	Moxostoma valenciennesi	invertivore	warm	S 3			Y	LIO, 2018
Yellow Bullhead	Ameiurus natalis	invertivore carnivore	warm	S4			Y	LIO, 2018
Brown Bullhead	Ameiurus nebulosus	invertivore herbivore carnivore	warm	S5			Y	LIO, 2018
Channel Catfish Ictalurus punctatus invertivore carnivore warm S4			Y	LIO, 2018				
Stonecat	cat <i>Noturus flavus</i> invertivore carnivore warm S4		Y	LIO, 2018				
Tadpole Madtom	Noturus gyrinus	invertivore planktivore	warm	S4			Y	LIO, 2018
Margined Madtom	Noturus insignis	invertivore	warm	SU			Y	LIO, 2018
Trout-perch	Percopsis omiscomaycus	invertivore carnivore	cold	S5			Y	LIO, 2018
Burbot	Lota lota	invertivore carnivore	cold	S5			Y	LIO, 2018
Banded Killifish	Fundulus diaphanus	invertivore planktivore	cool	S5	NAR		Y	LIO, 2018
Brook Silverside	Labidesthes sicculus	planktivore invertivore	warm	S4			Y	LIO, 2018
Brook Stickleback	Culaea inconstans	planktivore invertivore	cool	S5			Y	LIO, 2018
Ninespine Stickleback	Pungitius pungitus	planktivore	cool	S 5			Y	LIO, 2018
Mottled Sculpin	Cottus bairdii	invertivore	cool	S5			Y	LIO, 2018
Slimy Sculpin	Cottus cognatus	invertivore	cold	S5			Y	LIO, 2018
Rock Bass	Ambloplites rupestris	invertivore carnivore	cool	S5			Y	LIO, 2018
Pumpkinseed	Lepomis gibbosus	invertivore carnivore	warm	S5			Y	LIO, 2018
Bluegill	Lepomis macrochirus	invertivore	warm	S5			Y	LIO, 2018
Northern Sunfish	Lepomis peltastes	invertivore	warm	S 3	SC	SC	Y	LIO, 2018
Smallmouth Bass	Micropterus dolomieu	invertivore carnivore	cool	S5			Y	LIO, 2018

Species Name	Scientific Name	Trophic Class	Thermal Regime	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	Ottawa River	Reference
Largemouth Bass	Micropterus salmoides	invertivore carnivore	warm	S5			Y	LIO, 2018
White Crappie	Pomoxis annularis	invertivore carnivore	warm	S4			Y	LIO, 2018
Black Crappie	Pomoxis nigromaculatus	invertivore carnivore	cool	S4			Y	LIO, 2018
Iowa darter	Etheostoma exile	invertivore	cool	S5			Y	LIO, 2018
Fantail Darter	Etheostoma flabellare	invertivore	cool	S4			Y	LIO, 2018
Johnny Darter	Etheostoma nigrum	invertivore	cool	S5			Y	LIO, 2018
Tessellated Darter	Etheostoma olmstedi	invertivore	cool	S4	NAR		Y	LIO, 2018
Yellow Perch	Perca flavescens	invertivore carnivore	cool	S5			Y	LIO, 2018
Logperch	Percina caprodes	invertivore	warm	S5			Y	LIO, 2018
Sauger	Sander canadensis	invertivore carnivore	cool	S4			Y	LIO, 2018
Walleye	Sander vitreus	invertivore carnivore	cool	S5			Y	LIO, 2018
Freshwater Drum	Aplodinotus grunniens	invertivore carnivore	warm	S5			Y	LIO, 2018
Number of Species							75	
Y	Represents a species p	present in the respective water	course					

(DFO, 2019; Bowfin, 2018; Eakins, 2018; LIO, 2018; MNRF, 2017; MTO, 2006)

Status Updated: October 2, 2018

SRANK DEFINITIONS

S1 Critically Imperiled, Critically imperiled in the nation or state/province because of extreme rarity (often 5 or fewer occurrences) or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the state/province.

S2 Imperiled, Imperiled in the nation or state/province because of rarity due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors making it very vulnerable to extirpation from the nation or state/province.

S3 Vulnerable, Vulnerable in the nation or state/province due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors making it vulnerable to extirpation.

S4 Apparently Secure, Uncommon but not rare; some cause for long-term concern due to declines or other factors.

- S5 Secure, Common, widespread, and abundant in the nation or state/province.
- SNR Unranked, Nation or state/province conservation status not yet assessed.
- SU Unrankable, Currently unrankable due to lack of information or due to substantially conflicting information about status or trends.
- SNA Not Applicable, A conservation status rank is not applicable because the species is not a suitable target for conservation activities.

SARO STATUS DEFINITIONS

- END Endangered: A species facing imminent extinction or extirpation in Ontario which is a candidate for regulation under Ontario's ESA.
- THR Threatened: A species that is at risk of becoming endangered in Ontario if limiting factors are not reversed.
- SC Special Concern: A species with characteristics that make it sensitive to human activities or natural events.

SARA STATUS DEFINITIONS

SC Special Concern, a wildlife species that may become threatened or endangered because of a combination of biological characteristics and identified threats.

Figure 6: Background Fish Community and Habitat

4.0 REVIEW OF NATURAL HERITAGE FEATURES

The desktop review found that **<u>none</u>** of the following features were identified in the study area:

- provincially significant wetlands
- unevaluated wetlands
- coastal wetlands
- valleylands
- identified significant wildlife habitat
- Significant woodlands
- ANSIs

The UCPR identifies a significant woodland in the adjacent lands to the south of the proposed collector road. UCPR notes that only wildlife corridors and deer wintering yards are considered significant wildlife area in this area, and these are absent from the study area and adjacent lands.

Future Environmental Impact Studies (EIS) that will be required for proponents wishing to work within the study area will need to also look at the adjacent lands. With that in mind, the desktop identified significant woodlands to the south and, fish habitat, PSW, and an ANSI to the north of County Road 17 (in/on the Ottawa River).

The only identified **potential natural heritage features in the study area were:**

• Fish habitat in two identified watercourses and, while not mapped, any other permanent or seasonal ditch/drain that is connected to downstream fish habitat. If the pond is connected to downstream habitat, then it too could provide direct fish habitat. Confirmation of all potential fish habitat would require a site investigations.

Finally, with respect to Endangered and Threatened species/habitat, this will be an aspect that will need to be assessed by site specific investigations. However, we note that there maybe some opportunities associated with Endangered and Threatened that the City may wish to investigate now. These are discussed further in the sections below.

4.1 Endangered and Threatened Species

4.1.1 Species Discussion

Terrestrial and wetland Endangered and Threatened Species at Risk, on private land, are protected under provincial *Endangered Species Act* (ESA). It is noted that bird species protected under the *Species at Risk Act* (SARA) are protected by the *Migratory Bird Convention Act* (MBCA) on private lands. Fish (fish and mussels) Endangered and Threatened species are

protected in all watercourses under ESA and SARA. To identified potential opportunities, databases were consulted to create a list of Endangered and Threatened species that would be considered for this study area. It is important to note that this is based on the species listed in Ontario Regulation 230/08 (last updated August 1, 2018). The purpose of this section is to consider the habitats in the study area and make recommendations on opportunities. The opportunities could involve the dedication of property or purchasing property that could be used to support endangered and threatened species and their habitat. It is noted that when this is done, and implemented, these lands would be subject to constraints under ESA, as applicable to the species.

As discussed in the methods, the list was compiled using various sources. The NHIC database provides information available to the public on those SAR documented as occurring within the general area. It should be noted that not all information for all species is available to the public. Furthermore, the absence of a recording does not necessarily indicate that the species is absent from the area. The purpose of the NHIC database is to serve as a guide to help determine the potential species which may occur within the project area. The background review included looking at the list of birds observed as part of the Atlas of Breeding Birds of Ontario (ABBO) and any SAR species listed on these lists were considered as potentially occurring within the study area. Added to this list were species that based on personal experience, often occur within the general area. Species that would be restricted to the Ottawa River are not included (i.e. hickorynut (a mollusc), lake sturgeon, American eel and cutlip minnow (all fish)). The resulting list includes 11 SAR: 6 birds (eastern whip-poor-will, chimney swift, bank swallow, barn swallow, bobolink, and eastern meadowlark), 4 mammals (little brown myotis, northern myotis, eastern small-footed myotis, and the tri-colored bat), and 1 plant (butternut) (Table 3).

Birds

Through the background review, five species of birds were listed as potentially occurring: eastern whip-poor-will, chimney swift, barn swallow, bobolink, and eastern meadowlark. These species are discussed below.

Eastern Whip-poor-will

The whip-poor-will is a well camouflaged species can be found in a multitude of forest types. Its requirements consist of areas that are semi-open forests or sites with a closed forest intermixed with other open habitats. It also needs some areas with little ground cover. Its minimum habitat size requirement is 9 ha (COSEWIC, 2009b). The General Habitat Description for Eastern Whip-poor-will (MNRF on-line document) indicates that the protected habitat for this species includes three categories:

Category 1 known nests and 20 m of the nest

- Category 2 the area between 20 m and 170 m from the nest or the approximate centre of the defended territory
- Category 3 the area of suitable habitat between 170 m and 500 m of the nest or approximate centre of the defended territory

While the presence of eastern whip-poor-will in the UCPR is low, it is known to occur much further to the south and east of Rockland. There is very little woodlands in the study area, and these have mostly been impacted by the previous clearing activity and consist of very young, regenerating stands. Any woodland or treed area (regardless of whether it is classed as a significant woodland could provide habitat to this species. Typically the minimum stand size is roughly 9 ha, but this is not a firm rule. While the remnant stands within the study area are too small, those in the adjacent lands are appropriate. These include the lands that would need to be cleared for the Collector Road. If the species is present, this could result in restrictions on land uses in the study area. The restrictions would be dependent on the approximate location of the defended territories in relation to the study area (see distances associated with the Category 1-3 habitats).

Chimney Swift

There are no occurrences noted for this species within 10 km; its nearest sightings are by Sarsfield and Navan. The Chimney Swift can often be found in developed areas and prefers to utilize structures such as large (>50 cm diameter) trees or man-made structures such as chimneys for its nesting habitat (COSEWIC, 2007). The use of large trees is now considered a rare event and the documented occurrences have all been in trees that were <1 km from a waterbody (large enough to be shown on 1:50,000 topographical maps) (COSEWIC, 2007). While this Study Area is within 1 km of the Ottawa River, there appear to be few trees. That said, the woodland to be disturbed for the Collector Road would need to be investigated for this species. It is noted that Category 1 Chimney Swift habitat is the nesting structure (tree or chimney) and 90 m surrounding the structure (COSEWIC, 2007). Note that there is no Category 2 or 3 for this species.

Barn Swallow

The barn swallow can often be found nesting on man-made structures. Due to the structures on site this species nesting habitat could be present. Surveys would be required prior to impacting this species or its nest.

Category 1	The nest
Category 2	Area within 5 m of the nest.
Category 3	Area between 5 m and 200 m of the nest

Bobolink (Dolichonyx oryzivorus)

This species is grassland-breeding-bird typically requiring a minimum of 4 ha of uncut meadow or field. The *Bobolink* General Habitat Description (OMNRF, 2018) indicates that the protected habitat for this species includes three categories:

known nests and 10 m of the nest
the area between 10 m and 60 m from the nest or the approximate centre of
the defended territory
the area of continuous suitable habitat between 60 m and 300 m of the nest or approximate centre of the defended territory

This is a commonly observed species in UCPR. The background images showed that there were no meadow communities and much of the study area cropland which are not considered breeding habitat while under active agricultural uses. As such, this species and its habitat are considered absent while the lands are under active agricultural uses.

Eastern Meadowlark

Like the bobolink, this is a grassland breeding birds requiring a minimum of 4 ha of uncut meadow or field. The *General Habitat Description for Eastern Meadowlark* (OMNRF, 2018) indicates that the protected habitat for this species includes three categories:

Category 1	known nests and 10 m of the nest
Category 2	the area between 10 m and 100 m from the nest or the approximate centre
	of the defended territory
Category 3	the area of continuous suitable habitat between 100 m and 300 m of the
	nest or approximate centre of the defended territory

This is a commonly observed species in UCPR. The background images showed that there were no meadow communities and much of the study area cropland which are not considered breeding habitat while under active agricultural uses. As such, this species and its habitat are considered absent while the lands are under active agricultural uses.

Bats

The potential SAR bats within the general area are: little brown myotis, northern myotis, eastern small-footed myotis and tri-colored bat. There are three types of habitats required by bats: hibernation, maternity sites and day-roost sites. The latter is not considered critical habitat.

These four bats species prefer to hibernate in caves or mines. They can hibernate in buildings but that is rare for these species (COSEWIC, 2013a). No caves or mines were present.

The northern myotis tends to prefer larger expanses of older forests (late successional or primary forests) and chose maternity sites in snags that are in the mid-stage of decay. They prefer habitat with intact interior habitat and is shown to be negatively correlated with edge habitat (Menzel et al., 2002; Broders et al., 2006; Yates et al., 2006; OMNRF, 2015). This habitat is absent from the study area.

The recovery strategy for the eastern small-footed myotis indicates that the preferred maternity habitat of this species consists of open rock habitats and that it rarely uses old buildings as roosting/maternity sites (Humphrey, 2017). There was no suitable rocky habitat present. Based on this information, this species' maternity sites are considered absent.

The Atlas of Mammals of Ontario (Dobbyn, 1994) suggests that the tri-colored bat is not present within this part of Ontario however, the NatureServe mapping in the COSSARO (2015) includes all of southeastern Ontario. Though there is also a new recording of a potential individual across the river in Quebec on iNaturalist. They prefer caves for hibernacula and use old trees or buildings for summer maternity colonies (COSEWIC 2013). Based on this information, this species is considered to have a low potential of occurring, unless suitable habitat is bound in the ridge of the adjacent lands.

Finally, the little brown myotis has a potential for using the study area for maternity sites. <u>Current</u> guidance from MECP for this area is that habitat is not a limiting factor and that provided that avoidance measures can be implemented, that there would be no contravention of ESA for the removal of maternity or candidate maternity habitat. Note that this recommendation is subject to change.

There also remains the potential for various species to utilise the trees on-site for day-roosts. The current bat active season is April 1 to September 30 and restrictions to activities that could impact these species are in force during this period. Also note that should the ridge line provide cavities in rock, then there could be a potential for hibernacula (or as mentioned above breeding habitat for tri-colored bat). These are very sensitive and strictly protected. That habitat is outside of the study area but within the adjacent lands.

Plants

Butternuts

This species is common in UCPR. Butternut is listed as an endangered species federally signifying that it is at risk of becoming Extinct or Extirpated in Ontario and in Canada. Butternut is a shade intolerant species that is often found along edge habitats on rich, moist, well-drained loams or well-drained gravels (COESWIC, 2003). The butternut is threatened by a canker for

which there is no known control (COESWIC, 2003). There is a potential for butternuts in any habitat that is not under active crop uses or mowed.

4.1.2 SAR Conclusion

The background review were able to confirm the lack of suitable habitat for some of the potential SAR for the area. Those that remain are:

- Eastern whip-poor-will could use the deciduous forests to the southeast
- Chimney swifts and barn swallow could use the structures on site
- Bobolink and eastern meadowlark only if any of the agricultural fields are planted in hay or cereal crop, and ESA would apply if they were left fallow.
- Potential for bats remain in the larger forested areas and larger individual trees as well as in the ridge line is caves are present.
- Butternuts in any communities that are not actively and annually maintained through mowing or crops

Table 3: Summary of Potential SAR

Common Name	Scientific Name	Preferred Habitat	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	References	MECP Guidelines/Triggers for Review	Brought Forward (Yes/No)
BIRDS								
Eastern Whip- poor-will	Antrostomus vociferus	Rock or sand barrens with scattered trees, savannahs, old burns or other disturbed sites in a state of early to mid-forest succession, or open conifer plantations.	S4B	THR	THR	COSEWIC, 2013; Menzel et al., 2002; Broders et al., 2006; OMNRF, 2015	Forests to the south east may provide habitat for this species	Yes
Chimney Swift	Chaetura pelagica	Cities, towns, villages, rural, and wooded areas.	S4B, S4N	THR	THR	COSEWIC 2007a	May use structures within the study area	Yes
Bank Swallow	Riparia riparia	This species nests within vertical banks, with a preference for sand-silt substrate. Nesting sites may be near open upland habitats.	S4B	THR	THR	Eder 2002	No suitable banks within the study area	No
Barn Swallow	Hirundo rustica	Open or semi-open lands: farms, field, marshes.	S4B	SC	THR	COSEWIC 2017	May use structures within the study area	Yes
Bobolink	Dolichonyx oryzivorus	Primarily in forage crops, and grassland habitat.	S4B	THR	THR	COSEWIC 2010	May occur if agricultural fields are planted in hay or cereal crop	Vas
Eastern Meadowlark	Sturnella magna	Fields, meadows and prairies.	S4B	THR	THR	COSEWIC 2011	but are only protected under the Act if not in active use	res
MAMMALS								
Little Brown Myotis	Myotis lucifugus	Buildings, attics, roof crevices and loose bark on trees or under bridges. Always roost near waterbodies.	S4	END	END	COSEWIC 2013a	MECP recommends the use of avoidance timing window for clearing of trees (>10 cm in	
Northern Myotis	Myotis septentrionalis	Older (late successional or primary forests) with large interior habitat.	S3	END	END	COSEWIC 2013a, Broders et al, 2006, Menzel et al. 2002	diameter) if this can be accomplished then no impacts. Ridge line to the south (adjacent lands) has the	Yes

Common Name	Scientific Name	Preferred Habitat	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status	References	MECP Guidelines/Triggers for Review	Brought Forward (Yes/No)
Eastern Small- footed Myotis	Myotis leibii	Found within deciduous or coniferous forests in hilly areas.	S2, S3	END		Eder 2002	potential to offer more sensitive bat habitat if caves/crevices are	
Tri-colored Bat	Perimyotis subflavus	Prefers shrub habitat or open woodland near water.	S3?	END	END	COSEWIC 2013a	present.	
PLANTS								
Butternut	Juglans cinerea	Variety of sites, grows best on well-drained fertile soils in shallow valleys and on gradual slopes	S2?	END	END	COSEWIC 2003	May be present in any communities outside of the crop or mowed lawns	Yes

Status Updated August 1, 2020

SRANK DEFINITIONS

S1 Critically imperiled in the nation or state/province because of extreme rarity (often 5 or fewer occurrences) or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the state/province.

S2 Imperiled in the nation or state/province because of rarity due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors making it very vulnerable to extirpation from the nation or state/province.

S3 Vulnerable in the nation or state/province due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors making it vulnerable to extirpation.

S4 Apparently Secure, Uncommon but not rare; some cause for long-term concern due to declines or other factors.

? Inexact Numeric Rank—Denotes inexact numeric rank

S#S# Range Rank, A numeric range rank (e.g., S2S3) is used to indicate any range of uncertainty about the status of the species or community. Ranges cannot skip more than one rank (e.g., SU is used rather than S1S4).

S#B Breeding

SARO STATUS DEFINITIONS

- END Endangered: A species facing imminent extinction or extirpation in Ontario which is a candidate for regulation under Ontario's ESA.
- THR Threatened: A species that is at risk of becoming endangered in Ontario if limiting factors are not reversed.
- SC Special Concern: A species with characteristics that make it sensitive to human activities or natural events.

SARA STATUS DEFINITIONS

END Endangered, a wildlife species facing imminent extirpation or extinction.

Bowfin Environmental Consulting Inc. February 9, 2022

- THR Threatened, a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.
- SC Special Concern, a wildlife species that may become threatened or endangered because of a combination of biological characteristics and identified threats.

4.2 Fish Habitat

The potential fish habitat within the study area includes the Unnamed Feature, its branches, the pond (if connected to fish habitat), and any smaller (not identified herein) agricultural drains/ditches. The potential use of these by fish, any species, at any time of the year, is unknown. They have all assumed to be fish habitat.

The PPS states that development will not take place within fish habitat unless provincial and federal requirements are met (PPS, 2020). The NHRM specifies that the minimum natural vegetation buffer to fish habitat can be reduced from 30 m to 15 m for warm water systems and to 20 m for cool water systems.

Figure 7: Potential Fish Habitat

4.4 Areas of Natural and Scientific Interest

The Baie Lafountaine Islands, Candidate ANSI, Life Sciences are located 30 m north of the site, in the adjacent lands. The information provided by LIO is summarized below (Table 4). As it is across Highway 17 and listed as non sensitive it is unlikely to be affected by any work conducted in the Study Area. It overlaps with the Baie Fountaine provincially significant wetland which is located 290 m north of site.

Table 4: ANSI Information

Name	Туре	Significance	Sensitivity
Baie Lafountaine Islands	Candidate, Life Sciences	Regional	Non-Sensitive

5.0 CONSTRAINTS and OPPORTUNITIES

There are two larger communities that are naturalizing; the old agricultural field that was labelled as Cultural Thicket (labelled as Opportunity A on Figure 8), and the Cultural Thicket/Forest on the southeast side (labelled as Opportunity C). Opportunity A also has the pond feature. In addition, there is the setback from what is labelled the Unnamed Features which are assumed to be fish habitat (Opportunity B). The functions of these three opportunities should be carefully considered and are discussed below.

The following comments are based on the evaluation process under the *Natural Heritage Reference Manual* (OMNR, 2005) on the **suitability of opportunities as Significant Woodland.**

- A separation of 20 m in canopy between the opportunities and the existing Significant Woodland to the south would create a separation in stands.
- If the collector road is 20 m wide or greater, then the value of any woodland to the north would be based on that stand and a minimum size to be considered. The available area is <5 ha for all three opportunities. In this area the existing cover is 26%. As such, the minimum stand size is 20 ha for the size criteria. Also note that the minimum width of a treed area to be considered part of a woodland stand is 40-60 m (depending on the size of the stand).
- Functions such as proximity, linkages, water protection, and woodland diversity all have a minimum stand size to be considered significant. The woodland interior for an area with 26% cover is stated as 2 ha in the NHRM, which none of these will meet (after a 100 m edge is removed). And the NHRM is not as clear on the other functions, simply provides an example of 0.5-20.0 ha. The recent guideline from the City of Ottawa suggest a minimum size of 5 ha in areas with 26% cover (see the City of Ottawa's

Significant Woodlands: Guidelines for Identification, Evaluation, and Impact Assessment).

- For the opportunities labelled as A and B, the north end includes an existing single lot and there is the County Road 17. The County Road, and the proposed Collector Road, make a linkage function for wildlife (apart from birds) undesirable because of the potential for road mortality. Options for wildlife passage culverts for smaller species at County Road 17 and the collector road could be explored.
- Based on the above, the opportunities would not likely result in a Significant Woodland being created.

The potential to create habitat for Endangered or Threatened species is another opportunity. The species most suitable for these lands would be Butternut. An area could be set aside for compensation habitat to be used by the City or Developers. Other jurisdictions have used this opportunity to help attract developers. To be suitable, the location of the Butternut plantings would need to be determined in advance and meet the minimum requirements under the Ontario Regulations 242/08. Currently this O.Reg states (April 1, 2021):

- *"i. the soil must be greater than one metre deep, moist but well-drained and have a fine to medium texture with a recognizable organic layer and with a pH ranging from 6.8 to 7.2, and*
- ii. the area must provide full sunlight conditions to the butternut seedlings.
- 6. In order to avoid a monoculture of butternut, the person shall plant deciduous trees and shrubs that are not butternut seedlings and that are native to the area in which the seedlings are planted in such numbers to ensure that there are an equal number of butternut trees and other native Ontario species in the area.
- 8. No more than 200 butternut seedlings shall be planted in a hectare.
- 9. Butternut seedlings must be planted at least,
 - i. three metres from other planted butternut seedlings,
 - *ii. two metres from other trees or shrubs that are likely to be the same height or shorter than the butternut tree at full growth,*
 - iii. four metres from other trees or shrubs that are likely to be taller than the butternut tree at full growth,
 - *iv. five metres from the canopy drip line of trees that are greater than four metres in heights at the time of planting, and*
 - v. 100 metres from a highway consisting of two or more lanes in either direction."

Further, the Category Habitat for Butternuts extend 50 m (radius) from the planting. As such, a protected buffer for the plantings would be required. Note that the protected buffer for the companion trees would be much smaller, simply sufficient to protect their critical root zones.

What may be more appropriate in this location is:

• Opportunities A and B also provide protection to possible fish habitat. The guidelines for constraints is 30 m (NRHF; OMNR, 2005) with an ability to reduce this to 15 m for warm-water features and 20 m for cool water system. It is recommended that this Secondary Plan determine whether 15 m or 20 m, as appropriate, would be acceptable

and publish this within the Plan to provide clear guidance. Of course, if upon investigations, these features are found not to contain fish at anytime of year, then the minimum buffers would no longer apply in terms of Fish Habitat.

- Opportunities A and B would both, likely benefit, from a landscaping plan that would be focused on native species (including native herbaceous seed mixes). This would line up nicely with the UPCR policy 5.5.6 with respect to Vegetation Cover. A minimum buffer could be established, regardless of the presence of fish, to serve as protection to the water quality. If may be necessary to indicate whether the potential for relocating these features and constraints would be acceptable (this would be acceptable from a Fish Habitat perspective provided that it was approved by DFO).
- Any of these communities could be enhanced with native species and vegetation including natural meadow communities including those that include butterflies such as Monarch.
- As mentioned above, while the opportunities would not meet the Significant Woodland criteria, safe linkages for small mammals could still be created between the Ottawa River and the Significant Woodland south of the site if the County Road 17 culverts offer Small Mammal/Reptile Passage. This could help discourage wildlife from crossing that busy roadway. If this is completed during the widening, then any culverts that may be placed in the Collector Road could also consider small mammal passage.

In conclusion, other than the Fish Habitat, there are no confirmed natural constraints. Again, the presence of Endangered or Threatened Species or their Habitat is not mapped or confirmed, though a list of potential species is discussed herein. But three opportunities for enhancements are shown. The City is encouraged to consider these areas for enhancements. This could be combined with more of an Urban Park type of landscapes but one with native species and communities.

Figure 8: Constraints and Opportunities

I trust that this report will meet your requirements. Should you have any questions or comments, please contact the undersigned.

Sincerely,

Michelle Lavictoire, Biologist

7.0 REFERENCES

- Broders, H., Forbes, G., Woodley, S. & Thompson, I. (2006). Range extent and stand selection for roosting and foraging in forest-dwelling northern long eared bats and little brown bats in the greater Fundy ecosystem, New Brunswick. *Journal of Wildlife Management* 70: 5.
- Coker, G.A., Portt, C.B., & Minns, C.K. (2001). Morphological and Ecological Characteristics of Canadian Freshwater Fishes. *Canadian Manuscript Report of Fisheries and Aquatic Sciences* 2554. 89pp.
- COSEWIC. (2003). COSEWIC assessment and status report on the Butternut *Juglans cinerea* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 32 pp.
- COSEWIC. (2006). COSEWIC assessment and status report on the American Eel Anguilla rostrata in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 71 pp.
- COSEWIC. (2007a). COSEWIC assessment and update status report on the Chimney Swift *Chaetura pelagica* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 49 pp.
- COSEWIC. (2009b). COSEWIC assessment and status report on the Whip-poor-will Caprimulgus vociferus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 28 pp.
- COSEWIC. (2010a). COSEWIC assessment and status report on the Bobolink *Dolichonyx oryzivorus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 42 pp.
- COSEWIC. (2011). COSEWIC assessment and status report on the Eastern Meadowlark *Sturnella magna* on the Status of Endangered Wildlife in Canada. Ottawa. x + 40 pp.
- COSEWIC. (2013a). COSEWIC assessment and status report on the Bank Swallow Riparia riparia in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 48 pp.
- COSEWIC. (2013b). COSEWIC assessment and status report on the Cutlip Minnow Exoglossum maxillingua in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 35 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).

- COSEWIC. (2013c). COSEWIC assessment and status report on the Little Brown Myotis *Myotis lucifugus*, Northern Myotis *Myotis septentrionalis* and Tri-colored Bat *Perimyotis subflavus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xxiv + 93 pp
- COSEWIC. (2017). COSEWIC assessment and status report on the Lake Sturgeon Acipenser fulvescens, Western Hudson Bay populations, Saskatchewan-Nelson River populations, Southern Hudson Bay James Bay populations and Great Lakes-Upper St. Lawrence populations in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xxx + 153 pp.
- COSSARO. (2015). Ontario Species at Risk Evaluation Report for Tri-coloured Bat *Perimyotis subflavus*. Committee on the Status of Species at Risk in Ontario COSSARO. 21pp.
- Dobbyn, J. (1994). Atlas of the mammals of Ontario. Federation of Ontario Naturalists, Don Mills, ON.
- Eakins, R.J. (2018). Ontario Freshwater fishes life history database. Retrieved September 26, 2018, from: <u>http://www.ontariofishes.ca</u>
- Eder, T. (2002). Mammals of Ontario. Lone Pine. Alberta, Canada.
- Humphrey, C. (2017). Recovery Strategy for the Eastern Small-footed Myotis *Myotis leibii* in Ontario. Ontario Recovery Strategy Series. Prepared for the Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario. vii + 76 pp.
- Menzel. M, S. Owen, W. Edwards, P. Wood, B. Chapman & Miller, K. (2002). Roost tree selection by northern long-eared bat (Myotis septentrionalis) maternity colonies in an industrial forest of the central Appalachian Mountains. Forest Ecology and Management 155:107-114.
- MMAH. (2014) Ontario Provincial Policy Statement. Ministry of Municipal Affairs and Housing.
- MTO (2006). Environmental Guide for Fish and Fish Habitat, Section 5: Sensitivity of Fish and Fish Habitat. Ministry of Transportation Ontario.
- OMNR (2000). Significant Wildlife Habitat Technical Guide. Fish and Wildlife Branch Wildlife Section. Science Development and Transfer Branch. Southcentral Sciences Section.

OMMR (2010). Natural Heritage Reference Manual for Natural Heritage Policies of the Provincial Policy Statement, 2005. Second Edition. Toronto: Queen's Printer for Ontario. 248 pp.

Ontario Ministry of Natural Resources. (2014). Land Information Ontario.

OMNR. (2014). Ontario Wetland Evaluation System 3rd. Edition Version 3.3. viii + 284pp.

- Page, L.M, Espinosa-Pérez, H., Findley, L.T., Gilbert, C.R., Lea, R.N., Mandrak, N.E., Mayden, R.L., & Nelson, J.S. (2013). Common and Scientific Names of Fishes from the United States, Canada, and Mexico, 7th edition. American Fisheries Society. Special Publications 34.
- Peterson, R.T. (1980). A field guide to the birds: A completely new guide to all the birds of eastern and central North America. Houghton Mifflin Company, Boston.
- Phipps, J.B., & Muniyamm, M. (1980). A taxonomic revision of Crataegus (Rosaceae) in Ontario. Canadian Journal of Botany. 58: 1621-1699.
- Sandilands, A. (2005). Birds of Ontario Habitat Requirements, Limiting Factors and Status. Nonpasserines: waterfowl through cranes. UBC Press Vancouver, BC. 260-263pp.
- Scott W.B. & Crossman E.J. (1973) *Freshwater Fishes of Canada*. Fisheries Research Board of Canada, Ottawa.
- Stanfield, L. (editor). (2013). *Ontario Stream Assessment Protocol*. Version 9.0. Fisheries Policy Section. Ontario Ministry of Natural Resources. Peterborough, Ontario. 505 pp.
- Voss, E.G. (1985). Michigan flora: a guide to the identification and occurrence of the native and naturalized seed-plants of the state. Cranbrook Institute of Science Bulletin 59 and University of Michigan Herbarium. Michigan.
- Yates, M.D. & Muzika, R.M. (2006). Effect of forest structure and fragmentation on site occupancy of bat species in Missouri Ozark Forests. *Journal of Wildlife Management* 70: 1238-1248.

Appendix A: Background Information

Atlas of the Breeding Birds of Ontario

Squares: 18VR74, 18VR64, 18VR63, 18VR73

Common Name	Scientific Name	ABBO Category	SRANK	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status
Canada Goose	Branta canadensis	Probable	S5	no status	no status
Wood Duck	Aix sponsa	Confirmed	S5	no status	no status
Gadwall	Anas strepera	Probable	S4	no status	no status
American Black Duck	Anas rubripes	Probable	S4	no status	no status
Mallard	Anas platyrhynchos	Confirmed	S5	no status	no status
Northern Shoveler	Anas clypeata	Possible	S4	no status	no status
Northern Pintail	Anas acuta	Possible	S5	no status	no status
Green-winged Teal	Anas crecca	Probable	S4	no status	no status
Blue-winged Teal	Anas discors	Probable	S4	no status	no status
Lesser Scaup	Aythya affinis	Probable	S4	no status	no status
Hooded Merganser	Lophodytes cucullatus	Possible	S5B,S5N	no status	no status
Common Merganser	Mergus merganser	Probable	S5B,S5N	no status	no status
Gray Partridge	Perdix perdix	Possible	SNA	no status	no status
Ruffed Grouse	Bonasa umbellus	Confirmed	S4	no status	no status
Wild Turkey	Meleagris gallopava	Confirmed	S5	no status	no status
Pied-billed Grebe	Podilymbus podiceps	Possible	S4B, S4N	no status	no status
American Bittern	Botaurus lentiginosus	Confirmed	S4B	no status	no status
Great Blue Heron	Ardea herodias	Confirmed	S4	no status	no status
Green Heron	Butorides virescens	Probable	S4B	no status	no status
Turkey Vulture	Cathartes aura	Possible	S5B	no status	no status
Osprey	Pandion haliaetus	Confirmed	S5B	no status	no status
Northern Harrier	Circus cyaneus	Confirmed	S4B	no status	no status
Sharp-shinned Hawk	Accipiter striatus	Possible	S5	no status	no status
Cooper's Hawk	Accipiter cooperii	Confirmed	S4	no status	no status
Northern Goshawk	Accipiter gentilis	Possible	S 4	no status	no status
Broad-winged Hawk	Buteo platypterus	Possible	S5B	no status	no status
Red-tailed Hawk	Buteo jamaicensis	Probable	S5	no status	no status
American Kestrel	Falco sparverius	Confirmed	S4	no status	no status
Virginia Rail	Rallus limicola	Confirmed	S5B	no status	no status
Sora	Porzana carolina	Probable	S4B	no status	no status
American Coot	Fulica americana	Possible	S4B	no status	no status
Killdeer	Charadrius vociferus	Confirmed	S5B, S5N	no status	no status
Spotted Sandpiper	Actitis macularia	Confirmed	S5	no status	no status
Upland Sandpiper	Bartramia longicauda	Confirmed	S4B	no status	no status
Common Snipe	Gallinago delicata	Probable	S5B	no status	no status
American Woodcock	Scolopax minor	Probable	S4B	no status	no status
Black Tern	Chlidonias niger	Confirmed	S3B	SC	no status

				ESA	SARA
				Reg.	Schedule
		ABBO		230/08	1 List of
Common Name	Scientific Name	Category	SKANK	SARO	Wildlife
				List	SAR
				Status	Status
Rock Pigeon	Columba livia	Confirmed	SNA	no status	no status
Mourning Dove	Zenaida macroura	Confirmed	S5	no status	no status
Black-billed Cuckoo	Coccyzus erythropthalmus	Confirmed	S5B	no status	no status
Eastern Screech-Owl	Megascops asio	Possible	S4	no status	no status
Great Horned Owl	Bubo virginianus	Confirmed	S4	no status	no status
Short-eared Owl	Asio flammeus	Confirmed	S2N, S4B	SC	SC
Northern Saw-whet Owl	Aegolius acadicus	Possible	S4	no status	no status
Whip-poor-will	Caprimulgus vociferus	Possible	S4B	THR	THR
Chimney Swift	Chaetura pelagica	Possible	S4B, S4N	THR	THR
Ruby-throated Hummingbird	Archilochus colubris	Probable	S5B	no status	no status
Belted Kingfisher	Ceryle alcyon	Confirmed	S4B	no status	no status
Yellow-bellied Sapsucker	Sphyrapicus varius	Confirmed	S5B	no status	no status
Downy Woodpecker	Picoides pubescens	Confirmed	S5	no status	no status
Hairy Woodpecker	Picoides villosus	Confirmed	S5	no status	no status
Northern Flicker	Colaptes auratus	Probable	S4B	no status	no status
Pileated Woodpecker	Dryocopus pileatus	Probable	S5	no status	no status
Eastern Wood-Pewee	Contopus virens	Confirmed	S4B	SC	SC
Alder Flycatcher	Empidonax alnorum	Probable	S5B	no status	no status
Willow Flycatcher	Empidonax traillii	Probable	S5B	no status	no status
Least Flycatcher	Empidonax minimus	Probable	S4B	no status	no status
Eastern Phoebe	Sayornis phoebe	Confirmed	S5B	no status	no status
Great Crested Flycatcher	Myiarchus crinitus	Confirmed	S4B	no status	no status
Eastern Kingbird	Tyrannus tyrannus	Confirmed	S4B	no status	no status
Blue-headed Vireo	Vireo solitarius	Possible	S5B	no status	no status
Blue-gray Gnatcatcher	Polioptila caerulea	Confirmed	S4B	no status	no status
Warbling Vireo	Vireo gilvus	Probable	S5B	no status	no status
Red-eyed Vireo	Vireo olivaceus	Confirmed	S5B	no status	no status
Blue Jay	Cyanocitta cristata	Confirmed	S5	no status	no status
American Crow	Corvus brachyrhynchos	Confirmed	S5B	no status	no status
Common Raven	Corvus corax	Confirmed	S5	no status	no status
Horned Lark	Eremophila alpestris	Probable	S5B	no status	no status
Purple Martin	Progne subis	Confirmed	S3S4B	no status	no status
Tree Swallow	Tachycineta bicolor	Confirmed	S4B	no status	no status
Bank Swallow	Riparia riparia	Confirmed	S4B	THR	THR
Cliff Swallow	Petrochelidon pyrrhonota	Confirmed	S4B	no status	no status
Barn Swallow	Hirundo rustica	Confirmed	S4B	THR	THR
Black-capped Chickadee	Poecile atricapilla	Confirmed	S5	no status	no status
Red-breasted Nuthatch	Sitta canadensis	Probable	S5	no status	no status
White-breasted Nuthatch	Sitta carolinensis	Confirmed	S5	no status	no status
Brown Creeper	Certhia familiaris	Possible	S5B	no status	no status
House Wren	Troglodytes aedon	Confirmed	S5B	no status	no status

				ESA	SARA
				Reg.	Schedule
	Seientifie Nome	ABBO		230/08	1 List of
Common Name	Scientific Name	Category	SKANK	SARO	Wildlife
				List	SAR
				Status	Status
Winter Wren	Troglodytes troglodytes	Probable	S5B	no status	no status
Marsh Wren	Cistothorus palustris	Probable	S4B	no status	no status
Golden-crowned Kinglet	Regulus satrapa	Possible	S5B	no status	no status
Eastern Bluebird	Sialia sialis	Confirmed	S5B	no status	no status
Veery	Catharus fuscescens	Probable	S4B	no status	no status
Swainson's Thrush	Catharus ustulatus	Confirmed	S4B	no status	no status
Hermit Thrush	Catharus guttatus	Probable	S5B	no status	no status
Wood Thrush	Hylocichla mustelina	Probable	S4B	SC	THR
American Robin	Turdus migratorius	Confirmed	S5B	no status	no status
Gray Catbird	Dumetella carolinensis	Confirmed	S4B	no status	no status
Brown Thrasher	Toxostoma rufum	Probable	S4B	no status	no status
European Starling	Sturnus vulgaris	Confirmed	SNA	no status	no status
Cedar Waxwing	Bombycilla cedrorum	Confirmed	S5B	no status	no status
Nashville Warbler	Vermivora ruficapilla	Confirmed	S5B	no status	no status
Yellow Warbler	Dendroica petechia	Confirmed	S5B	no status	no status
Chestnut-sided Warbler	Dendroica pensylvanica	Confirmed	S5B	no status	no status
Black-throated Blue Warbler	Dendroica caerulescens	Probable	S5B	no status	no status
Yellow-rumped Warbler	Dendroica coronata	Confirmed	S5B	no status	no status
Black-throated Green Warbler	Dendroica virens	Probable	S5B	no status	no status
Blackburnian Warbler	Dendroica fusca	Possible	S5B	no status	no status
Pine Warbler	Dendroica pinus	Probable	S5B	no status	no status
Black-and-white Warbler	Mniotilta varia	Probable	S5B	no status	no status
American Redstart	Setophaga ruticilla	Confirmed	S5B	no status	no status
Ovenbird	Seiurus aurocapillus	Confirmed	S4B	no status	no status
Northern Waterthrush	Seiurus noveboracensis	Possible	S5B	no status	no status
Mourning Warbler	Oporornis philadelphia	Probable	S4B	no status	no status
Common Yellowthroat	Geothlypis trichas	Confirmed	S5B	no status	no status
Canada Warbler	Wilsonia canadensis	Possible	S4B	SC	THR
Chipping Sparrow	Spizella passerina	Confirmed	S5B	no status	no status
Field Sparrow	Spizella pusilla	Probable	S4B	no status	no status
Vesper Sparrow	Pooecetes gramineus	Possible	S4B	no status	no status
Savannah Sparrow	Passerculus sandwichensis	Confirmed	S4B	no status	no status
Song Sparrow	Melospiza melodia	Confirmed	S5B	no status	no status
Swamp Sparrow	Melospiza georgiana	Confirmed	S5B	no status	no status
White-throated Sparrow	Zonotrichia albicollis	Confirmed	S5B	no status	no status
Dark-eyed Junco	Junco hyemalis	Possible	S5B	no status	no status
Scarlet Tanager	Piranga olivacea	Confirmed	S4B	no status	no status
Northern Cardinal	Cardinalis cardinalis	Confirmed	S5	no status	no status
Rose-breasted Grosbeak	Pheucticus ludovicianus	Confirmed	S4B	no status	no status
Indigo Bunting	Passerina cyanea	Probable	S4B	no status	no status
Bobolink	Dolichonyx oryzivorus	Confirmed	S4B	THR	THR

Common Name	Scientific Name	ABBO Category	SRANK	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status
Red-winged Blackbird	Agelaius phoeniceus	Confirmed	S4	no status	no status
Eastern Meadowlark	Sturnella magna	Confirmed	S4B	THR	THR
Common Grackle	Quiscalus quiscula	Confirmed	S5B	no status	no status
Brown-headed Cowbird	Molothrus ater	Confirmed	S4B	no status	no status
Baltimore Oriole	Icterus galbula	Confirmed	S4B	no status	no status
Purple Finch	Carpodacus purpureus	Probable	S4B	no status	no status
House Finch	Carpodacus mexicanus	Confirmed	SNA	no status	no status
Pine Siskin	Carduelis pinus	Possible	S4B	no status	no status
American Goldfinch	Carduelis tristis	Confirmed	S5B	no status	no status
House Sparrow Passer	Passer domesticus	Confirmed	SNA	no status	no status

Status Updated March 25, 2021

SRANK DEFINITIONS

S4 Apparently Secure, Uncommon but not rare; some cause for long-term concern due to declines or other factors.

S5 Secure, Common, widespread, and abundant in the nation or state/province.

SNA Not Applicable, A conservation status rank is not applicable because the species is not a suitable target for conservation activities.

S#B Breeding

S#N Non-Breeding

SARO STATUS DEFINITIONS

THR Threatened: A species that is at risk of becoming endangered in Ontario if limiting factors are not reversed.

SC Special Concern: A species with characteristics that make it sensitive to human activities or natural events.

SARA STATUS DEFINITIONS

THR Threatened, a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.

SC Special Concern, a wildlife species that may become threatened or endangered because of a combination of biological characteristics and identified threats.

Species of Conservation Value

INSECTSMonarchDanaus plexippusOld fields, meadows, roadsides confined to places were milkweed sp. grow.S2N, S4BSCSCElusive ClubtailStylurus notatusOccur along streams or shores of large lakes.S2nonenoneREPTILESSanpping TurtleChelydra serpentinalExclusively aquatic, except when females nest. Found in lakes, marshes, large rivers, large ponds, slow streams, with abundant vegetation, soft bottom substrate, and stagnant water.S2N, S4BSCNoneBald EagleHaliacetus leucocephalusAssociated with large lakes and rivers. Frequently observed on dead branches overlooking water.S384BSCSCRed-necked PhalaropePhalaropus lobatusBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCSCBack TernChildonias nigerBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCTHRPeweeContopus virens undergrowth and with tall trees for singing perches.S4BSCSCEvening GrosbeakCoccothraustes vespertinusFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous stands mixed forest shaving an open understory.S4BSCSCEvening GrosbeakCoccothraustes vespertinusS1nonenoneNoneFunctionHaliacetus and mixed forest shaving an open understory.S4BSCSCEvening GrosbeakCoccothraustes vespertinusS	Common Name	Scientific Name	Preferred Habitat	SRank	ESA Reg. 230/08 SARO List Status	SARA Schedule 1 List of Wildlife SAR Status
MonarchDanaus plexippusOld fields, meadows, roadsides confined to places were milkweed sp. grow.S2N, S4BSCSCElusive ClubtailStylurus notatusOccur along streams or shores of large lakes.S2nonenoneREPTILESSnapping TurtleChelydra serpentinaExclusively aquatic, except when females nest. Found in lakes, marshes, large rivers, large ponds, slow streams, with abundant vegetation, soft bottom substrate, and stagnant water.S2N, S4BSCnoneBRDSExclusively aquatic, except when females nest.S384BSCSCRed-necked Phalaropus lobatusAssociated with large lakes and rivers. Frequently observed on dead branches overlooking water.S384BSCSCBakk TernChildonias nigerBreed in freshwater marshes.S4BSCSCBakk TernChildonias nigerBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCSCWood ThrushHylocichla musteliaFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous undergrowth and with tall trees for singing perches.S4BSCSCEvening GrosbeakCoccothraustes vespertinusCoccothraustes vespertinusS4BSCSCFuars Purple- finged Orchid 	INSECTS					
Elusive ClubtailStylurus notatusOccur along streams or shores of large lakes.S2nonenoneREPTILESSnapping TurtleChelydra serpentinaExclusively aquatic, except when females nest. Found in lakes, marshes, large privers, large ponds, slow streams, with abundant vegetation, soft bottom substrate, and stagnant water.S2N, S4BSCnoneBIRDSBald EagleHaliaeetus leucocephalusAssociated with large lakes and rivers. Frequently observed on dead branches overlooking water.S3S4BSCSCBald FaglePhalaropus lobatusAssociated with large lakes and rivers. Frequently observed on dead branches overlooking water.S3BSCSCBack TernChlidonias nigerBreed in freshwater marshes.S4BSCSCEastern Wood- PeweeContopus virens and mixed forests having an open understory.S4BSCSCWood ThrushHylocichila mustelinaFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous undergrowth and with tall trees for singing perches.S4BSCSCEvening GrosbeakCoccothraustes vespertinusS1nonenonePLANTSLarge Purple- gradifloraMoist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches.S2N, S4BSCSC	Monarch	Danaus plexippus	Old fields, meadows, roadsides confined to places were milkweed sp. grow.	S2N, S4B	SC	SC
REPTILESSnapping TurtleChelydra serpentinalExclusively aquatic, except when females nest. Found in lakes, marshes, large privers, large ponds, slow streams, with abundant vegetation, soft bottom substrate, and stagnant water.S2N, S4BSCnoneBIRDSHaliaeetus leucocephalusAssociated with large lakes and rivers. Frequently observed on dead branches overlooking water.S3S4BSCSCRed-necked PhalaropePhalaropus lobatusAssociated mith large lakes and rivers. Frequently observed on dead branches overlooking water.S3BSCSCBlack TernChlidonias nigerBreed in freshwater marshes.S4BSCSCEastern Wood- PeweeContopus virensBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCTHRWood ThrushHylocichla mustelinaFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous and mixed forests insging perches.S1nonenoneEvening GrosbeakCoccothraustes vespertinusS1nonenonenonePLANTSLarge Purple- grandifloraMoist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches.S2N, S4BSCSC	Elusive Clubtail	Stylurus notatus	Occur along streams or shores of large lakes.	S 2	none	none
Snapping TurtleChelydra serpentinalExclusively aquatic, except when females nest. Found in lakes, marshes, large rivers, large ponds, slow stubstrate, and stagnant water.S2N, S4BSCnoneBIRDSBald EagleHaliaeetus leucocephalusAssociated with large lakes and rivers. Frequently observed on dead branches overlooking water.S3S4BSCSCRed-necked PhalaropePhalaropus lobatusChildonias nigerBreed in freshwater marshes.S4BSCSCBlack TermChildonias nigerBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCSCWood ThrushHylocichla mustelinaFound in moist, deciduous and with all trees for singing perches.S4BSCSCEvening Grosbeak fringed OrchidCoccontraustes grandifloraMoist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches.S2N, S4BSCSC	REPTILES					
BIRDS Bald Eagle Haliaeetus leucocephalus Associated with large lakes and rivers. Frequently observed on dead branches overlooking water. \$354B \$C \$C Red-necked Phalarope Phalaropus lobatus \$3B \$C \$C Black Tern Chlidonias niger Breed in freshwater marshes. \$4B \$C \$C Eastern Wood- Pewee Contopus virens Breed mostly in mature and intermediate-age deciduous and mixed forests having an open understory. \$4B \$C \$C Wood Thrush Hylocichla mustelina Found in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous undergrowth and with tall trees for singing perches. \$4B \$C \$C Evening Grosbeak Coccothraustes vespertinus \$1 none none HLARY E Moist habitat, deciduous or coniferous forest and grandiflora \$2N, \$4B \$C \$C	Snapping Turtle	Chelydra serpentina	Exclusively aquatic, except when females nest. Found in lakes, marshes, large rivers, large ponds, slow streams, with abundant vegetation, soft bottom substrate, and stagnant water.	S2N, S4B	SC	none
Bald EagleHaliacetus leucocephalusAssociated with large lakes and rivers. Frequently observed on dead branches overlooking water.S3S4BSCSCRed-necked PhalaropePhalaropus lobatusS3BSCnoneBlack TernChlidonias nigerBreed in freshwater marshes.S4BSCSCEastern Wood- PeweeContopus virensBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCTHRWood ThrushHylocichla mustelinaFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous undergrowth and with tall trees for singing perches.S1nonenoneEvening GrosbeakCoccothraustes vespertinusS1nonenonenoneHAMTSIarge Purple- fringed OrchidPlatanthera grandifloraMoist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches.S2N, S4BSCSC	BIRDS					
Red-necked PhalaropePhalaropus lobatusS3BSCnoneBlack TernChlidonias nigerBreed in freshwater marshes.S4BSCSCEastern Wood- PeweeContopus virensBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCTHRWood ThrushHylocichla mustelinaFound in moist, deciduous hardwood or mixed stands, 	Bald Eagle	Haliaeetus leucocephalus	Associated with large lakes and rivers. Frequently observed on dead branches overlooking water.	S3S4B	SC	SC
Black TernChlidonias nigerBreed in freshwater marshes.S4BSCSCEastern Wood- PeweeContopus virensBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCTHRWood ThrushHylocichla mustelinaFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous 	Red-necked Phalarope	Phalaropus lobatus		S3B	SC	none
Eastern Wood- PeweeContopus virensBreed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.S4BSCTHRPeweeMylocichla mustelinaFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous 	Black Tern	Chlidonias niger	Breed in freshwater marshes.	S4B	SC	SC
Wood ThrushHylocichla mustelinaFound in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous undergrowth and with tall trees for singing perches.S4BSCSCEvening GrosbeakCoccothraustes vespertinusCoccothraustes vespertinusNoneNoneNonePLANTSLarge Purple- fringed OrchidPlatanthera grandifloraMoist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches.S2N, S4BSCSC	Eastern Wood- Pewee	Contopus virens	Breed mostly in mature and intermediate-age deciduous and mixed forests having an open understory.	S4B	SC	THR
Evening GrosbeakCoccothraustes vespertinusS1nonenonePLANTSLarge Purple- fringed OrchidPlatanthera grandifloraMoist habitat, deciduous or coniferous forest and 	Wood Thrush	Hylocichla mustelina	Found in moist, deciduous hardwood or mixed stands, often previously disturbed, with a dense deciduous undergrowth and with tall trees for singing perches.	S4B	SC	SC
PLANTS Large Purple- Platanthera Moist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches. S2N, S4B SC SC	Evening Grosbeak	Coccothraustes vespertinus		S 1	none	none
Large Purple- fringed OrchidPlatanthera grandifloraMoist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches.S2N, S4BSCSC	PLANTS					
	Large Purple- fringed Orchid	Platanthera grandiflora	Moist habitat, deciduous or coniferous forest and swamps, grassy meadows and ditches.	S2N, S4B	SC	SC

Status Updated March 25, 2021

SRANK DEFINITIONS

S1 Critically imperiled in the nation or state/province because of extreme rarity (often 5 or fewer occurrences) or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the state/province.

S2 Imperiled in the nation or state/province because of rarity due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors making it very vulnerable to extirpation from the nation or state/province.

S3 Vulnerable in the nation or state/province due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors making it vulnerable to extirpation.

S4 Apparently Secure, Uncommon but not rare; some cause for long-term concern due to declines or other factors.

S#S# Range Rank, A numeric range rank (e.g., S2S3) is used to indicate any range of uncertainty about the status of the species or community. Ranges cannot skip more than one rank (e.g., SU is used rather than S1S4).

S#B Breeding

S#N Non-Breeding

SARO STATUS DEFINITIONS

SC Special Concern: A species with characteristics that make it sensitive to human activities or natural events.

SARA STATUS DEFINITIONS

THR Threatened, a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.

SC Special Concern, a wildlife species that may become threatened or endangered because of a combination of biological characteristics and identified threats.

DFO Aquatic Species at Risk Mapping

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:OvercastAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	d	Total		
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	4	3	4	1	5	18	0	4	3	3	0	0	45
07:45	5	4	7	1	9	16	0	5	1	1	4	0	53
08:00	6	11	1	0	1	20	0	5	1	8	0	1	54
08:15	12	9	3	0	3	9	0	6	0	3	5	0	50
08:30	0	0	0	0	0	2	0	1	0	0	0	0	3

Car traffic

Intonyal starts	nterval starts			We	estboun	d	Nc	orthbour	nd	Ea	d	Total	
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	4	3	4	1	5	18	0	4	3	3	0	0	45
07:45	5	4	7	1	9	16	0	5	1	1	4	0	53
08:00	6	11	1	0	1	20	0	5	1	8	0	1	54
08:15	12	9	3	0	3	9	0	6	0	3	5	0	50
08:30	0	0	0	0	0	2	0	1	0	0	0	0	3

Truck traffic

Intonyal starts	Interval starts			We	estboun	d	No	orthbour	nd	Ea	d	Total	
intervar starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrian volumes

Intonyal starts		NE		NW				SW				Total	
interval starts	Left	Right	Total	TOLAI									
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	2	2	0	0	0	0	0	0	0	0	0	2
08:15	0	0	0	0	0	0	0	1	1	1	0	1	2
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0

07:30 - 08:30

	Sc	SouthBound			estboun	d	Nc	orthbour	nd	Ea	d	Total	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	27	27	15	2	18	63	0	20	5	15	9	1	202
Factor	0.56	0.61	0.54	0.50	0.50	0.79	0.00	0.83	0.42	0.47	0.45	0.25	0.94
Approach Factor		0.72			0.80			0.89			0.69		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	ind	Westbound			Northbound			Ea	Total		
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	27	27	15	2	18	63	0	20	5	15	9	1	202
Truck	0	0	0	0	0	0	0	0	0	0	0	0	0

Peak Hour Pedestrians

		NE			NW	-		SW	_		SE		Total
	Left	Right	Total	Total									
Pedestrians	0	2	2	0	0	0	0	1	1	1	0	1	4

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:OvercastAnalyst:Paige Harrison

Intersection Peak Hour

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
Vehicle Total	27	27	15	2	18	63	0	20	5	15	9	1	202
Factor	0.56	0.61	0.54	0.50	0.50	0.79	0.00	0.83	0.42	0.47	0.45	0.25	0.94
Approach Factor		0.72			0.80			0.89			0.69		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:Partly CloudyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	E	astboun	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	45	31	2	0	9	30	0	11	1	5	4	0	138
16:15	36	21	6	3	5	30	0	15	7	0	6	1	130
16:30	39	25	8	5	6	24	1	9	4	1	9	0	131
16:45	44	19	7	1	5	28	0	13	5	3	4	0	129
17:00	0	0	0	0	0	1	0	0	0	0	0	0	1

Car traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	45	31	2	0	9	30	0	11	1	5	4	0	138
16:15	36	21	6	3	5	30	0	15	7	0	6	1	130
16:30	39	25	8	5	6	24	1	9	4	1	9	0	131
16:45	44	19	7	1	5	28	0	13	5	3	4	0	129
17:00	0	0	0	0	0	1	0	0	0	0	0	0	1

Truck traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
intervar starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrian volumes

Intonyal starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	1	1	0	0	0	1
16:30	0	2	2	0	0	0	0	0	0	0	0	0	2
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	164	96	23	9	25	112	1	48	17	9	23	1	528
Factor	0.91	0.77	0.72	0.45	0.69	0.93	0.25	0.80	0.61	0.45	0.64	0.25	0.96
Approach Factor		0.91			0.94			0.75			0.82		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	164	96	23	9	25	112	1	48	17	9	23	1	528
Truck	0	0	0	0	0	0	0	0	0	0	0	0	0

Peak Hour Pedestrians

		NE			NW	_		SW			SE		Total
	Left	Right	Total	Total									
Pedestrians	0	2	2	0	0	0	0	1	1	0	0	0	3

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:Partly CloudyAnalyst:Paige Harrison

Intersection Peak Hour

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
Vehicle Total	164	96	23	9	25	112	1	48	17	9	23	1	528
Factor	0.91	0.77	0.72	0.45	0.69	0.93	0.25	0.80	0.61	0.45	0.64	0.25	0.96
Approach Factor		0.91			0.94			0.75			0.82		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	2	7	8	3	5	1	23	5	0	4	4	1	63
07:45	4	5	7	1	9	4	7	11	1	9	2	5	65
08:00	3	6	6	4	6	4	9	15	0	5	0	5	63
08:15	1	11	12	1	5	3	8	12	2	13	1	5	74
08:30	0	0	0	0	0	0	0	0	1	0	0	0	1

Car traffic

Interval starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
Interval Starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	2	7	8	3	5	1	23	5	0	4	4	1	63
07:45	4	5	7	1	9	4	7	11	1	9	2	5	65
08:00	3	6	6	4	6	4	9	15	0	5	0	5	63
08:15	1	11	12	1	5	3	8	12	2	13	1	5	74
08:30	0	0	0	0	0	0	0	0	1	0	0	0	1

Pedestrian volumes

Intonyal starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
07:30	0	0	0	0	0	0	2	1	3	0	0	0	3
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	1	1	1	0	1	0	0	0	0	0	0	2
08:15	0	2	2	0	0	0	0	1	1	4	0	4	7
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	10	29	33	9	25	12	47	43	3	31	7	16	265
Factor	0.62	0.66	0.69	0.56	0.69	0.75	0.51	0.72	0.38	0.60	0.44	0.80	0.90
Approach Factor		0.75			0.82			0.83			0.71		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	10	29	33	9	25	12	47	43	3	31	7	16	265

Peak Hour Pedestrians

		NE	_		NW	_		SW	_		SE	_	Total
	Left	Right	Total	Total									
Pedestrians	0	3	3	1	0	1	2	2	4	4	0	4	12

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Intersection Peak Hour

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
Vehicle Total	10	29	33	9	25	12	47	43	3	31	7	16	265
Factor	0.62	0.66	0.69	0.56	0.69	0.75	0.51	0.72	0.38	0.60	0.44	0.80	0.90
Approach Factor		0.75			0.82			0.83			0.71		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	ld	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	5	22	30	8	5	3	14	21	9	42	11	14	184
16:15	10	20	32	6	7	6	8	24	5	38	12	18	186
16:30	7	16	28	4	12	1	16	15	5	34	8	30	176
16:45	5	16	18	2	5	2	18	14	3	38	15	31	167
17:00	0	1	0	1	0	0	0	1	0	0	0	0	3

Car traffic

Interval starte	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
Interval Starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	5	22	30	8	5	3	14	21	9	42	11	14	184
16:15	10	20	32	6	7	6	8	24	5	38	12	18	186
16:30	7	16	28	4	12	1	16	15	5	34	8	30	176
16:45	5	16	18	2	5	2	18	14	3	38	15	31	167
17:00	0	1	0	1	0	0	0	1	0	0	0	0	3

Pedestrian volumes

Intonval starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
16:00	0	1	1	0	0	0	0	0	0	0	0	0	1
16:15	0	0	0	0	0	0	0	0	0	2	0	2	2
16:30	0	1	1	0	0	0	0	2	2	0	0	0	3
16:45	0	2	2	1	0	1	0	0	0	2	0	2	5
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	27	74	108	20	29	12	56	74	22	152	46	93	713
Factor	0.68	0.84	0.84	0.62	0.60	0.50	0.78	0.77	0.61	0.90	0.77	0.75	0.96
Approach Factor		0.84			0.80			0.86			0.87		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	27	74	108	20	29	12	56	74	22	152	46	93	713

Peak Hour Pedestrians

		NE	_		NW	-		SW	_		SE		Total
	Left	Right	Total	Total									
Pedestrians	0	4	4	1	0	1	0	2	2	4	0	4	11

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Intersection Peak Hour

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOtal
Vehicle Total	27	74	108	20	29	12	56	74	22	152	46	93	713
Factor	0.68	0.84	0.84	0.62	0.60	0.50	0.78	0.77	0.61	0.90	0.77	0.75	0.96
Approach Factor		0.84			0.80			0.86			0.87		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron Street at HWY 17, Clarence-RocklandGPS Coordinates:2021-06-23Date:2021-06-23Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	0	0	0	7	199	0	25	0	3	0	89	6	329
07:45	0	0	0	9	172	0	30	0	12	0	113	9	345
08:00	0	0	0	12	148	0	15	0	6	0	113	10	304
08:15	0	0	0	17	186	0	24	0	9	0	102	12	350

Car traffic

Intonyal starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	E	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
07:30	0	0	0	7	199	0	25	0	3	0	89	6	329
07:45	0	0	0	9	172	0	30	0	12	0	113	9	345
08:00	0	0	0	12	148	0	15	0	6	0	113	10	304
08:15	0	0	0	17	186	0	24	0	9	0	102	12	350

Pedestrian volumes

Interval starts		NE	_		NW	_		SW	_		SE		Total
interval starts	Left	Right	Total	TOTAL									
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	0	0	0	45	705	0	94	0	30	0	417	37	1328
Factor	0.00	0.00	0.00	0.66	0.89	0.00	0.78	0.00	0.62	0.00	0.92	0.77	0.95
Approach Factor		0.00			0.91			0.74			0.92		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	0	0	0	45	705	0	94	0	30	0	417	37	1328

Peak Hour Pedestrians

		NE			NW	-		SW	_		SE		Total
	Left	Right	Total	Total									
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0

Location:Carmen Bergeron Street at HWY 17, Clarence-RocklandGPS Coordinates:2021-06-23Date:2021-06-23Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Intersection Peak Hour

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Vehicle Total	0	0	0	45	705	0	94	0	30	0	417	37	1328
Factor	0.00	0.00	0.00	0.66	0.89	0.00	0.78	0.00	0.62	0.00	0.92	0.77	0.95
Approach Factor		0.00			0.91			0.74			0.92		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron St at HWY 17, Clarence-RocklandGPS Coordinates:2021-06-23Date:2021-06-23Day of week:WednesdayWeather:Partly Sunny

Analyst: Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	E	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	0	0	0	21	156	0	24	0	26	0	235	34	496
16:15	0	0	0	25	139	0	17	0	25	0	239	44	489
16:30	0	0	0	30	147	0	17	0	29	0	273	49	545
16:45	0	0	0	28	153	0	15	0	25	0	224	58	503
17:00	0	0	0	0	0	0	0	0	0	0	2	0	2

Car traffic

Interval starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astboun	d	Total
Interval Starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	0	0	0	21	156	0	24	0	26	0	235	34	496
16:15	0	0	0	25	139	0	17	0	25	0	239	44	489
16:30	0	0	0	30	147	0	17	0	29	0	273	49	545
16:45	0	0	0	28	153	0	15	0	25	0	224	58	503
17:00	0	0	0	0	0	0	0	0	0	0	2	0	2

Pedestrian volumes

Intonyal starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	1	1	0	0	0	1
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	0	0	0	104	595	0	73	0	105	0	971	185	2033
Factor	0.00	0.00	0.00	0.87	0.95	0.00	0.76	0.00	0.91	0.00	0.89	0.80	0.93
Approach Factor		0.00			0.97			0.89			0.90		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	0	0	0	104	595	0	73	0	105	0	971	185	2033

Peak Hour Pedestrians

		NE			NW	_		SW	_		SE	_	Total
	Left	Right	Total	Total									
Pedestrians	0	0	0	0	0	0	0	1	1	0	0	0	1

Location:Carmen Bergeron St at HWY 17, Clarence-RocklandGPS Coordinates:Date:2021-06-23Day of week:WednesdayWeather:Partly SunnyAnalyst:Paige Harrison

Intersection Peak Hour

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Vehicle Total	0	0	0	104	595	0	73	0	105	0	971	185	2033
Factor	0.00	0.00	0.00	0.87	0.95	0.00	0.76	0.00	0.91	0.00	0.89	0.80	0.93
Approach Factor		0.00			0.97			0.89			0.90		

Appendix D

Detailed Synchro Output Data

Existing Conditions 1: Carmen Bergeron & HWY 17/HW 17

	→	\rightarrow	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	٨	#	×	٨	×	*
Traffic Volume (vph)	417	37	45	705	94	30
Future Volume (vph)	417	37	45	705	94	30
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	463	41	50	783	104	33
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6		
Permitted Phases	-	2	6	v	Ŭ	8
Detector Phase	2	2	1	6	8	8
Switch Phase	2	2		Ū	0	0
Minimum Initial (s)	5.0	50	5.0	5.0	50	5.0
Minimum Split (s)	27.2	27.2	11.0	27.2	23.0	23.0
Total Solit (s)	56.0	56.0	21.0	77.0	20.2	20.2
Total Split (%)	50.0	5/ /0/	21.0	7/ 00/	20.0	20.0
Valley Time (a)	04.4%	04.4%	20.4%	14.0%	20.2%	20.2%
	4.6	4.0	4.6	4.0	3.3	3.3
All-Red Lime (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
I otal Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	30.2	30.2	32.7	36.5	11.3	11.3
Actuated g/C Ratio	0.58	0.58	0.62	0.70	0.22	0.22
v/c Ratio	0.50	0.05	0.10	0.70	0.32	0.10
Control Delay	14.5	4.0	4.9	12.1	27.5	11.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.5	4.0	4.9	12.1	27.5	11.5
LOS	B	A	A	В	C	B
Approach Delay	13.6			11.6	23.6	-
Approach LOS	B			B	C	
Queue Length 50th (m)	39.6	0.0	17	50.9	9.6	0.0
Queue Length 95th (m)	70.8	Δ.0 Δ.7	5.8	118 7	31.0	7.6
Internal Link Dist (m)	130.0	4./	5.0	181 3	05.8	1.0
Turn Bay Length (m)	155.0	80.0	125.0	101.5	35.0	
Pase Capacity (vab)	137F	117/	739	15/F	7/2	680
Stonyation Can Badyate	13/5	11/4	130	1040	/45	002
Starvation Cap Reductin	0	U	0	0	0	U
Spiliback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.34	0.03	0.07	0.51	0.14	0.05
Intersection Summary						
Cycle Length: 103						
Actuated Cycle Longth: 52.4						
Notural Cycle: 65						
Centrel Type: Actuated Upgeordingte	d					
Control Type: Actuated-Uncoordinate	d					
Intersection Circle Delay 12.4				, ,	lana a dha a ta	00. P
Intersection Signal Delay: 13.4	/			In	tersection L	09: R
Intersection Capacity Utilization 58.2%	0			IC	U Level of S	Service B
Analysis Period (min) 15						
Splits and Phases: 1. Carmen Rero	ieron & H\A	/Y 17/HW/ 1 [.]	7			
	-	,,,,,,,,,,,,				
🕈 Ø1						

AM.syn
Existing Conditions 2: Carmen Bergeron & Richelieu

2: Carmen Bergeron & Riche	elieu											AM.syn
	≯	+	*	4	ł	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	× 1	۵.		× 1	۵.		× 1	1.			4	1
Traffic Volume (vph)	15	9	1	2	18	63	0	20	5	27	27	15
Future Volume (vph)	15	9	1	2	18	63	0	20	5	27	27	15
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	17	11	0	2	90	0	0	28	0	0	60	17
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilization 24.3%				IC	U Level of S	Service A						

Analysis Period (min) 15

Existing Conditions 2: Carmen Bergeron & Richelieu

2: Carmen Bergeron & Ric	chelieu											AM.syn
	≯	+	*	4	ł	*	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	1.		5	1.		N	î.			្ឋ	1
Sign Control		Stop			Stop		-	Stop			Stop	
Traffic Volume (vph)	15	9	1	2	18	63	0	20	5	27	27	15
Future Volume (vph)	15	9	1	2	18	63	0	20	5	27	27	15
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	17	10	1	2	20	70	0	22	6	30	30	17
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total (vph)	17	11	2	90	0	28	60	17				
Volume Left (vph)	17	0	2	0	0	0	30	0				
Volume Right (vph)	0	1	0	70	0	6	0	17				
Hadj (s)	0.53	-0.03	0.53	-0.51	0.00	-0.12	0.28	-0.67				
Departure Headway (s)	5.4	4.8	5.3	4.3	4.8	4.7	5.1	4.1				
Degree Utilization, x	0.03	0.01	0.00	0.11	0.00	0.04	0.08	0.02				
Capacity (veh/h)	655	724	652	815	738	735	683	840				
Control Delay (s)	7.3	6.7	7.1	6.6	6.6	6.7	7.3	6.0				
Approach Delay (s)	7.1		6.6		6.7		7.0					
Approach LOS	А		А		Α		Α					
Intersection Summary												
Delay			6.8									
Level of Service			А									
Intersection Capacity Utilization			24.3%	IC	U Level of S	ervice			А			
Analysis Period (min)			15									

Existing Conditions 3: Poupart & Richelieu

3: Poupart & Richelieu												AM.syn
	≯	+	*	4	ł	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	î.			4			4			4	
Traffic Volume (vph)	31	7	16	9	25	12	47	43	3	10	29	33
Future Volume (vph)	31	7	16	9	25	12	47	43	3	10	29	33
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	34	26	0	0	51	0	0	103	0	0	80	0
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Canacity I Itilization 28 7%				IC	III evel of S	Service A						

Analysis Period (min) 15

Existing Conditions 3: Poupart & Richelieu

3: Poupart & Richelieu												AM.syn
	≯	+	*	4	ł	*	•	1	*	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	1.			4			4			4	
Sign Control	-	Stop			Stop			Stop			Stop	
Traffic Volume (vph)	31	7	16	9	25	12	47	43	3	10	29	33
Future Volume (vph)	31	7	16	9	25	12	47	43	3	10	29	33
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	34	8	18	10	28	13	52	48	3	11	32	37
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total (vph)	34	26	51	103	80							
Volume Left (vph)	34	0	10	52	11							
Volume Right (vph)	0	18	13	3	37							
Hadj (s)	0.53	-0.45	-0.08	0.12	-0.22							
Departure Headway (s)	5.5	4.5	4.4	4.4	4.1							
Degree Utilization, x	0.05	0.03	0.06	0.12	0.09							
Capacity (veh/h)	622	760	770	796	855							
Control Delay (s)	7.6	6.5	7.7	8.0	7.5							
Approach Delay (s)	7.1		7.7	8.0	7.5							
Approach LOS	А		А	Α	А							
Intersection Summary												
Delay			7.6									
Level of Service			А									
Intersection Capacity Utilization			28.7%	IC	U Level of Se	rvice			А			
Analysis Period (min)			15									

	≯	~	*	+	I	1
	-	•)		•	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.			च	1.	
Traffic Volume (vph)	2	14	19	3	54	17
Future Volume (vph)	2	14	19	3	54	17
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	18	0	0	24	79	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilization 18.1	%			ICI	J Level of S	Service A

Intersection Capacity Utilization 18.1% Analysis Period (min) 15

Existing Conditions 4: Poupart & Walmart

AM.syn

	≯	\mathbf{r}	▲	†	.↓	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			⊿1	1⊾	
Traffic Volume (veh/h)	2	14	19	3	54	17
Future Volume (Veh/h)	2	14	19	3	54	17
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	2	16	21	3	60	19
Pedestrians	_					
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				None	None	
Linstream signal (m)						
nX platoon unblocked						
vC conflicting volume	11/	70	70			
vC1_stage 1 conf vol	114	10	15			
vC2 stage 2 confivel						
	114	70	79			
tC single (s)	64	62	13			
	0.4	0.2	4.1			
(C, Z stage(S))	25	2.2	0.0			
(F (S)	100	0.0	2.2			
pu queue liee %	100	90	99 1510			
civi capacity (ven/n)	070	995	1519			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	18	24	79			
Volume Left	2	21	0			
Volume Right	16	0	19			
cSH	978	1519	1700			
Volume to Capacity	0.02	0.01	0.05			
Queue Length 95th (m)	0.4	0.3	0.0			
Control Delay (s)	8.8	6.5	0.0			
Lane LOS	А	А				
Approach Delay (s)	8.8	6.5	0.0			
Approach LOS	A					
Intersection Summary						
			2.6			
Intersection Canacity Litilization			18 1%			Nice
Analysis Period (min)			10.170			NCC

Existing Conditions 1: Carmen Bergeron & HWY 17/HW 17

	-	\mathbf{r}	1	-	1	1
Lane Group	FBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		1				1
Traffic Volume (vph)	971	185	104	T 595	73	105
Future Volume (vph)	971	185	104	595	73	105
Peak Hour Factor	0 00	0 90	0 90	0.00	0 90	0 90
Shared Lane Traffic (%)	0.50	0.00	0.00	0.00	0.00	0.30
Lane Group Flow (vph)	1079	206	116	661	81	117
	NA	Perm	nm+nt	NA	Prot	Perm
Protected Phases	2	i eiiii	μπ+μι 1	6	FIUL 8	i eiiii
Permitted Phases	2	2	6	U	0	Q
Detector Phase	2	2	1	6	8	8
Switch Phase	2	2	1	U	U	U
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Solit (s)	0.0 07 0	27.2	11.0	27.0	22.0	22.0
Total Split (s)	21.Z	21.Z	21.0	21.Z 77.0	20.2	20.2
Total Split (%)	0.0C	5/ /0/	21.0	7/ 00/	20.0	20.0
	J4.4%	04.4%	20.4%	14.0%	20.2%	20.2%
reliow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Lime (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
I otal Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	50.0	50.0	64.6	64.6	9.9	9.9
Actuated g/C Ratio	0.58	0.58	0.75	0.75	0.12	0.12
v/c Ratio	1.16	0.24	0.52	0.55	0.46	0.45
Control Delay	105.4	4.5	19.7	7.0	44.8	13.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	105.4	4.5	19.7	7.0	44.8	13.1
LOS	F	A	В	A	D	В
Approach Delay	89.2		_	8.9	26 1	_
Approach LOS	F			A	C	
Oueue Length 50th (m)	~217 5	43	45	38.1	13.1	0.0
Queue Length 95th (m)	#3// 8	17 /	23.0	76.6	28.6	15.2
Internal Link Dist (m)	130.0	17.4	25.2	10.0	20.0	15.2
Turn Pay Longth (m)	139.0	80.0	125.0	101.5	90.0	
Page Canacity (unh)	020	00.0	120.0	1000	260	110
Capacity (vpii)	930	000	320	1323	209	410
Starvation Cap Reductin	0	0	0	0	U	0
Spiliback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.16	0.24	0.35	0.50	0.22	0.28
Intersection Summary						
Cycle Longth: 102						
Actuated Quale Length: 96						
Actuated Cycle Length: 86						
Natural Cycle: 120						
Control Type: Actuated-Uncoordina	ated					
Maximum v/c Ratio: 1.16						
Intersection Signal Delay: 56.1				In	tersection L	OS: E
Intersection Capacity Utilization 84	.8%			IC	U Level of S	Service E
Analysis Period (min) 15						
 Volume exceeds capacity, quei 	ue is theoretic	ally infinite.				
Queue shown is maximum after	two cycles.					
# 95th percentile volume exceeds	s capacity, qu	eue may be	longer.			
Queue shown is maximum after	two cycles.					
Splits and Phases: 1: Carmen Bo	ergeron & H\A	/Y 17/HW/ 1	7			
		1 17/11VV I	I			

PM.syn

Existing Conditions 2: Carmen Bergeron & Richelieu

2: Carmen Bergeron & Riche	elieu											PM.syn
	≯	+	\mathbf{F}	1	ł	*	-	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	۴.		×	1.		× 1	î.			្ឋា	*
Traffic Volume (vph)	9	23	1	9	25	112	1	48	17	164	96	23
Future Volume (vph)	9	23	1	9	25	112	1	48	17	164	96	23
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	10	27	0	10	152	0	1	72	0	0	289	26
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilization 39.1%				IC	U Level of S	Service A						

Analysis Period (min) 15

Existing Conditions 2: Carmen Bergeron & Richelieu

2: Carmen Bergeron & Ric	chelieu											PM.syn
	≯	+	*	4	ł	*	•	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	î.		7	ţ,		*	î.			្ឋ	1
Sign Control	-	Stop		-	Stop		-	Stop			Stop	-
Traffic Volume (vph)	9	23	1	9	25	112	1	48	17	164	96	23
Future Volume (vph)	9	23	1	9	25	112	1	48	17	164	96	23
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	10	26	1	10	28	124	1	53	19	182	107	26
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total (vph)	10	27	10	152	1	72	289	26				
Volume Left (vph)	10	0	10	0	1	0	182	0				
Volume Right (vph)	0	1	0	124	0	19	0	26				
Hadj (s)	0.53	0.01	0.53	-0.54	0.53	-0.15	0.35	-0.67				
Departure Headway (s)	6.2	5.7	6.1	5.0	5.9	5.2	5.4	4.4				
Degree Utilization, x	0.02	0.04	0.02	0.21	0.00	0.10	0.44	0.03				
Capacity (veh/h)	537	587	555	675	585	661	643	780				
Control Delay (s)	8.1	7.7	8.0	8.1	7.7	7.6	11.4	6.4				
Approach Delay (s)	7.8		8.1		7.6		10.9					
Approach LOS	А		А		Α		В					
Intersection Summary												
Delay			9.6									
Level of Service			А									
Intersection Capacity Utilization			39.1%	IC	U Level of S	Service			А			
Analysis Period (min)			15									

Existing Conditions 3: Poupart & Richelieu

3: Poupart & Richelieu												PM.syn
	≯	+	\mathbf{F}	4	ł	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	× 1	۵.									4	
Traffic Volume (vph)	152	46	93	20	29	12	56	74	22	27	74	108
Future Volume (vph)	152	46	93	20	29	12	56	74	22	27	74	108
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	169	154	0	0	67	0	0	168	0	0	232	0
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilization 44.9%				IC	U Level of S	Service A						

Analysis Period (min) 15

Existing Conditions 3: Poupart & Richelieu

3: Poupart & Richelieu												PM.syn
	≯	+	*	4	↓	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	1.			4			4			4	
Sign Control	-	Stop			Stop			Stop			Stop	
Traffic Volume (vph)	152	46	93	20	29	12	56	74	22	27	74	108
Future Volume (vph)	152	46	93	20	29	12	56	74	22	27	74	108
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	169	51	103	22	32	13	62	82	24	30	82	120
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total (vph)	169	154	67	168	232							
Volume Left (vph)	169	0	22	62	30							
Volume Right (vph)	0	103	13	24	120							
Hadj (s)	0.53	-0.43	-0.02	0.02	-0.25							
Departure Headway (s)	6.2	5.2	5.5	5.3	4.9							
Degree Utilization, x	0.29	0.22	0.10	0.25	0.32							
Capacity (veh/h)	553	655	585	636	684							
Control Delay (s)	10.5	8.5	9.2	10.0	10.2							
Approach Delay (s)	9.5		9.2	10.0	10.2							
Approach LOS	А		А	В	В							
Intersection Summary												
Delay			9.8									
Level of Service			А									
Intersection Capacity Utilization			44.9%	IC	U Level of Ser	vice			А			
Analysis Period (min)			15									

4: Poupart & Walmart							PM.syn
	≯	\mathbf{F}	•	Ť	Ŧ	<	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	M.			្ឋ	î.		
Traffic Volume (vph)	36	34	43	152	187	12	
Future Volume (vph)	36	34	43	152	187	12	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	78	0	0	217	221	0	
Sign Control	Stop			Free	Free		
Intersection Summary							
Control Type: Unsignalized							
Intersection Capacity Utilization 38.8%				ICI	J Level of S	Service A	

Intersection Capacity Utilization 38.8% Analysis Period (min) 15

Existing Conditions 4: Poupart & Walmart

	≯	>	•	Ť	Ţ	1
		•	1	I		000
Movement	EBL	EBK	NBL	NRI	SBI	SBR
Lane Configurations	¥	0.4	10	୍ କ୍	1	10
Traffic Volume (veh/h)	36	34	43	152	187	12
Future Volume (Veh/h)	36	34	43	152	187	12
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	40	38	48	169	208	13
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Lipstream signal (m)						
nX nlatoon unblocked						
vC conflicting volume	190	21/	221			
vC, connicting volume	400	214	221			
vC1, stage 1 conti vol						
vCz, stage z comi voi	400	214	004			
	480	214	221			
to, single (s)	b.4	6.2	4.1			
tC, 2 stage (s)	<u> </u>		~ ~			
t⊢ (s)	3.5	3.3	2.2			
p0 queue free %	92	95	96			
cM capacity (veh/h)	526	825	1348			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	78	217	221			
Volume Left	40	48	0			
Volume Right	38	0	13			
cSH	639	1348	1700			
Volume to Capacity	0.12	0.04	0.13			
Queue Length 95th (m)	3.3	0.9	0.0			
Control Delay (s)	11.4	2.0	0.0			
LaneLOS	R	Δ	0.0			
Approach Delay (s)	11 /	20	0.0			
Approach LOS	11.4 P	2.0	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			2.5			
Intersection Capacity Utilization			38.8%	IC	U Level of Se	rvice
Analysis Period (min)			15			

Appendix E

Existing Watermain, Sanitary, and Storm Servicing

Ma lot Date:

cted and may	DESIGN:	ТВ	
or purposes	DRAWN:	ТВ	
consent of	CHECKED:	GF	
s Limited.	JLR #:	31097	FIGURE 2

				σ
cted and may	DESIGN:	ТВ		ž
or purposes	DRAWN:	ТВ		ate:
consent of	CHECKED:	GF		õ
s Limited.	JLR #:	31097	FIGURE 3	<u>10</u>

www.jlrichards.ca

Ottawa

343 Preston Street Tower II, Suite 1000 Ottawa ON Canada K1S 1N4 Tel: 613 728-3571 ottawa@jlrichards.ca

North Bay

501-555 Oak Street E North Bay ON Canada P1B 8E3 Tel: 705 495-7597

northbay@jlrichards.ca

Kingston

203-863 Princess Street Kingston ON Canada K7L 5N4 Tel: 613 544-1424

kingston@jlrichards.ca

Hawkesbury

326 Bertha Street Hawkesbury ON Canada K6A 2A8 Tel: 613 632-0287

hawkesbury@jlrichards.ca

Sudbury

314 Countryside Drive Sudbury ON Canada P3E 6G2 Tel: 705 522-8174

sudbury@jlrichards.ca

Guelph

107-450 Speedvale Ave. West Guelph ON Canada N1H 7Y6 Tel: 519 763-0713

834 Mountjoy Street S

Timmins ON Canada

timmins@jlrichards.ca

Tel: 705 360-1899

Timmins

P4N 7C5

guelph@jlrichards.ca

JLR Logo is a Registered Trademark ® 2009, all rights are reserved

Appendix B

Detailed Turning Movement Counts June 15th and June 23rd, 2021 J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:OvercastAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	4	3	4	1	5	18	0	4	3	3	0	0	45
07:45	5	4	7	1	9	16	0	5	1	1	4	0	53
08:00	6	11	1	0	1	20	0	5	1	8	0	1	54
08:15	12	9	3	0	3	9	0	6	0	3	5	0	50
08:30	0	0	0	0	0	2	0	1	0	0	0	0	3

Car traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	d	Total	
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	4	3	4	1	5	18	0	4	3	3	0	0	45
07:45	5	4	7	1	9	16	0	5	1	1	4	0	53
08:00	6	11	1	0	1	20	0	5	1	8	0	1	54
08:15	12	9	3	0	3	9	0	6	0	3	5	0	50
08:30	0	0	0	0	0	2	0	1	0	0	0	0	3

Truck traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
intervar starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrian volumes

Intonyal starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	2	2	0	0	0	0	0	0	0	0	0	2
08:15	0	0	0	0	0	0	0	1	1	1	0	1	2
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	27	27	15	2	18	63	0	20	5	15	9	1	202
Factor	0.56	0.61	0.54	0.50	0.50	0.79	0.00	0.83	0.42	0.47	0.45	0.25	0.94
Approach Factor		0.72			0.80			0.89			0.69		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	ind	We	estboun	d	Nc	orthbour	nd	Ea	astbour	ld	Total
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	27	27	15	2	18	63	0	20	5	15	9	1	202
Truck	0	0	0	0	0	0	0	0	0	0	0	0	0

Peak Hour Pedestrians

	NE Left Right Total 0 2 2				NW	-		SW	_		SE		Total
	Left	Right	Total	Left	Right	Total	Left	Right	Total	Left	Right	Total	Total
Pedestrians	0	2	2	0	0	0	0	1	1	1	0	1	4

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:OvercastAnalyst:Paige Harrison

Intersection Peak Hour

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	d	Total	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
Vehicle Total	27	27	15	2	18	63	0	20	5	15	9	1	202
Factor	0.56	0.61	0.54	0.50	0.50	0.79	0.00	0.83	0.42	0.47	0.45	0.25	0.94
Approach Factor		0.72			0.80			0.89			0.69		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:Partly CloudyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	E	astboun	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	45	31	2	0	9	30	0	11	1	5	4	0	138
16:15	36	21	6	3	5	30	0	15	7	0	6	1	130
16:30	39	25	8	5	6	24	1	9	4	1	9	0	131
16:45	44	19	7	1	5	28	0	13	5	3	4	0	129
17:00	0	0	0	0	0	1	0	0	0	0	0	0	1

Car traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	45	31	2	0	9	30	0	11	1	5	4	0	138
16:15	36	21	6	3	5	30	0	15	7	0	6	1	130
16:30	39	25	8	5	6	24	1	9	4	1	9	0	131
16:45	44	19	7	1	5	28	0	13	5	3	4	0	129
17:00	0	0	0	0	0	1	0	0	0	0	0	0	1

Truck traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
intervar starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrian volumes

Intonyal starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	1	1	0	0	0	1
16:30	0	2	2	0	0	0	0	0	0	0	0	0	2
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOtal
Vehicle Total	164	96	23	9	25	112	1	48	17	9	23	1	528
Factor	0.91	0.77	0.72	0.45	0.69	0.93	0.25	0.80	0.61	0.45	0.64	0.25	0.96
Approach Factor		0.91			0.94			0.75			0.82		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	164	96	23	9	25	112	1	48	17	9	23	1	528
Truck	0	0	0	0	0	0	0	0	0	0	0	0	0

Peak Hour Pedestrians

		NE			NW	_		SW			SE		Total
	Left	Right	Total	Total									
Pedestrians	0	2	2	0	0	0	0	1	1	0	0	0	3

Location:Carmen Bergeron St at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-15Date:2021-06-15Day of week:TuesdayWeather:Partly CloudyAnalyst:Paige Harrison

Intersection Peak Hour

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
Vehicle Total	164	96	23	9	25	112	1	48	17	9	23	1	528
Factor	0.91	0.77	0.72	0.45	0.69	0.93	0.25	0.80	0.61	0.45	0.64	0.25	0.96
Approach Factor		0.91			0.94			0.75			0.82		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	2	7	8	3	5	1	23	5	0	4	4	1	63
07:45	4	5	7	1	9	4	7	11	1	9	2	5	65
08:00	3	6	6	4	6	4	9	15	0	5	0	5	63
08:15	1	11	12	1	5	3	8	12	2	13	1	5	74
08:30	0	0	0	0	0	0	0	0	1	0	0	0	1

Car traffic

Interval starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
Interval Starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	2	7	8	3	5	1	23	5	0	4	4	1	63
07:45	4	5	7	1	9	4	7	11	1	9	2	5	65
08:00	3	6	6	4	6	4	9	15	0	5	0	5	63
08:15	1	11	12	1	5	3	8	12	2	13	1	5	74
08:30	0	0	0	0	0	0	0	0	1	0	0	0	1

Pedestrian volumes

Intonyal starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
07:30	0	0	0	0	0	0	2	1	3	0	0	0	3
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	1	1	1	0	1	0	0	0	0	0	0	2
08:15	0	2	2	0	0	0	0	1	1	4	0	4	7
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOtal
Vehicle Total	10	29	33	9	25	12	47	43	3	31	7	16	265
Factor	0.62	0.66	0.69	0.56	0.69	0.75	0.51	0.72	0.38	0.60	0.44	0.80	0.90
Approach Factor		0.75			0.82			0.83			0.71		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	10	29	33	9	25	12	47	43	3	31	7	16	265

Peak Hour Pedestrians

		NE			NW	_		SW	_		SE	_	Total
	Left	Right	Total	Total									
Pedestrians	0	3	3	1	0	1	2	2	4	4	0	4	12

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Intersection Peak Hour

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
Vehicle Total	10	29	33	9	25	12	47	43	3	31	7	16	265
Factor	0.62	0.66	0.69	0.56	0.69	0.75	0.51	0.72	0.38	0.60	0.44	0.80	0.90
Approach Factor		0.75			0.82			0.83			0.71		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	5	22	30	8	5	3	14	21	9	42	11	14	184
16:15	10	20	32	6	7	6	8	24	5	38	12	18	186
16:30	7	16	28	4	12	1	16	15	5	34	8	30	176
16:45	5	16	18	2	5	2	18	14	3	38	15	31	167
17:00	0	1	0	1	0	0	0	1	0	0	0	0	3

Car traffic

Interval starte	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	5	22	30	8	5	3	14	21	9	42	11	14	184
16:15	10	20	32	6	7	6	8	24	5	38	12	18	186
16:30	7	16	28	4	12	1	16	15	5	34	8	30	176
16:45	5	16	18	2	5	2	18	14	3	38	15	31	167
17:00	0	1	0	1	0	0	0	1	0	0	0	0	3

Pedestrian volumes

Intonval starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
16:00	0	1	1	0	0	0	0	0	0	0	0	0	1
16:15	0	0	0	0	0	0	0	0	0	2	0	2	2
16:30	0	1	1	0	0	0	0	2	2	0	0	0	3
16:45	0	2	2	1	0	1	0	0	0	2	0	2	5
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	27	74	108	20	29	12	56	74	22	152	46	93	713
Factor	0.68	0.84	0.84	0.62	0.60	0.50	0.78	0.77	0.61	0.90	0.77	0.75	0.96
Approach Factor		0.84			0.80			0.86			0.87		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Venicie	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	27	74	108	20	29	12	56	74	22	152	46	93	713

Peak Hour Pedestrians

		NE	_		NW	-		SW	_		SE		Total
	Left	Right	Total	Total									
Pedestrians	0	4	4	1	0	1	0	2	2	4	0	4	11

Location:Poupart Rd at Richelieu St, Clarence-RocklandGPS Coordinates:2021-06-16Date:2021-06-16Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Intersection Peak Hour

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Vehicle Total	27	74	108	20	29	12	56	74	22	152	46	93	713
Factor	0.68	0.84	0.84	0.62	0.60	0.50	0.78	0.77	0.61	0.90	0.77	0.75	0.96
Approach Factor		0.84			0.80			0.86			0.87		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron Street at HWY 17, Clarence-RocklandGPS Coordinates:2021-06-23Date:2021-06-23Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
07:30	0	0	0	7	199	0	25	0	3	0	89	6	329
07:45	0	0	0	9	172	0	30	0	12	0	113	9	345
08:00	0	0	0	12	148	0	15	0	6	0	113	10	304
08:15	0	0	0	17	186	0	24	0	9	0	102	12	350

Car traffic

Intonyal starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	E	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
07:30	0	0	0	7	199	0	25	0	3	0	89	6	329
07:45	0	0	0	9	172	0	30	0	12	0	113	9	345
08:00	0	0	0	12	148	0	15	0	6	0	113	10	304
08:15	0	0	0	17	186	0	24	0	9	0	102	12	350

Pedestrian volumes

Interval starts		NE	_		NW	_		SW	_		SE	_	Total
interval starts	Left	Right	Total	Total									
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	0	0	0	45	705	0	94	0	30	0	417	37	1328
Factor	0.00	0.00	0.00	0.66	0.89	0.00	0.78	0.00	0.62	0.00	0.92	0.77	0.95
Approach Factor		0.00			0.91			0.74			0.92		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Vehicle	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	0	0	0	45	705	0	94	0	30	0	417	37	1328

Peak Hour Pedestrians

		NE			NW	-		SW	_		SE		Total
	Left	Right	Total	Total									
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0

Location:Carmen Bergeron Street at HWY 17, Clarence-RocklandGPS Coordinates:2021-06-23Date:2021-06-23Day of week:WednesdayWeather:SunnyAnalyst:Paige Harrison

Intersection Peak Hour

07:30 - 08:30

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
Vehicle Total	0	0	0	45	705	0	94	0	30	0	417	37	1328
Factor	0.00	0.00	0.00	0.66	0.89	0.00	0.78	0.00	0.62	0.00	0.92	0.77	0.95
Approach Factor		0.00			0.91			0.74			0.92		

J.L. Richards

Ottawa, Ontario,

Turn Count Summary

Location:Carmen Bergeron St at HWY 17, Clarence-RocklandGPS Coordinates:2021-06-23Date:2021-06-23Day of week:WednesdayWeather:Partly Sunny

Analyst: Paige Harrison

Total vehicle traffic

Intonyal starts	So	outhBou	ind	We	estboun	d	No	orthbour	nd	E	astbour	d	Total
interval starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	0	0	0	21	156	0	24	0	26	0	235	34	496
16:15	0	0	0	25	139	0	17	0	25	0	239	44	489
16:30	0	0	0	30	147	0	17	0	29	0	273	49	545
16:45	0	0	0	28	153	0	15	0	25	0	224	58	503
17:00	0	0	0	0	0	0	0	0	0	0	2	0	2

Car traffic

Interval starts	Sc	outhBou	Ind	We	estboun	d	No	orthbour	nd	Ea	astboun	d	Total
Interval Starts	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOLAI
16:00	0	0	0	21	156	0	24	0	26	0	235	34	496
16:15	0	0	0	25	139	0	17	0	25	0	239	44	489
16:30	0	0	0	30	147	0	17	0	29	0	273	49	545
16:45	0	0	0	28	153	0	15	0	25	0	224	58	503
17:00	0	0	0	0	0	0	0	0	0	0	2	0	2

Pedestrian volumes

Intonyal starts		NE			NW			SW			SE		Total
interval starts	Left	Right	Total	TOLAI									
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	1	1	0	0	0	1
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00 - 17:00

	Sc	outhBou	Ind	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	TOTAL
Vehicle Total	0	0	0	104	595	0	73	0	105	0	971	185	2033
Factor	0.00	0.00	0.00	0.87	0.95	0.00	0.76	0.00	0.91	0.00	0.89	0.80	0.93
Approach Factor		0.00			0.97			0.89			0.90		

Peak Hour Vehicle Summary

Vehicle	Sc	outhBou	nd	We	estboun	d	Nc	orthbour	nd	Ea	astboun	d	Total
Vehicle	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Car	0	0	0	104	595	0	73	0	105	0	971	185	2033

Peak Hour Pedestrians

	NE				NW	_		SW	_		SE	_	Total
	Left	Right	Total	Total									
Pedestrians	0	0	0	0	0	0	0	1	1	0	0	0	1
Intersection Peak Hour

Location:Carmen Bergeron St at HWY 17, Clarence-RocklandGPS Coordinates:Date:2021-06-23Day of week:WednesdayWeather:Partly SunnyAnalyst:Paige Harrison

Intersection Peak Hour

16:00 - 17:00

	SouthBound		Westbound			Northbound			Eastbound			Total	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Total
Vehicle Total	0	0	0	104	595	0	73	0	105	0	971	185	2033
Factor	0.00	0.00	0.00	0.87	0.95	0.00	0.76	0.00	0.91	0.00	0.89	0.80	0.93
Approach Factor		0.00		0.97		0.89			0.90				

Appendix C

Detailed Synchro Output Data for Existing Conditions

2023 Existing Conditions - AM 1: Carmen Bergeron & HWY 17/HW 17

	-	\mathbf{i}	1	-	1	1			
Lane Group	EBŢ	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	*	1	×	*	3	1			
Traffic Volume (vph)	626	56	68	1058	141	45			
Future Volume (vph)	626	56	68	1058	141	45			
Lane Group Flow (vph)	659	59	72	1114	148	47			
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases		2	6			8			
Detector Phase	2	2	1	6	8	8			
Switch Phase		_		-		-			
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0			
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2			
Total Split (s)	56.0	56.0	21.0	77.0	26.0	26.0			
Total Split (%)	54 4%	54 4%	20.4%	74.8%	25.2%	25.2%			
Yellow Time (s)	46	46	46	4 6	3.3	3.3			
All-Red Time (s)	1.0	1.0	1.0	1.0	1 0	1 0			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	0.0	0.0	0.0	0.0	0.0	0.0			
I Otal LOST I IME (S)	6.2	6.2	6.2	6.2	5.2	5.2			
Lead/Lag	Lag	Lag	Lead						
Lead-Lag Optimize?	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	None			
Act Effct Green (s)	47.1	47.1	56.9	56.9	13.2	13.2			
Actuated g/C Ratio	0.57	0.57	0.69	0.69	0.16	0.16			
v/c Ratio	0.65	0.07	0.18	0.91	0.55	0.17			
Control Delay	17.2	3.0	5.3	23.9	43.4	12.1			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	17.2	3.0	5.3	23.9	43.4	12.1			
LOS	В	A	A	С	D	В			
Approach Delay	16 1			22.8	35.9	-			
Approach LOS	R			C.	00.0 D				
Oueue Length 50th (m)	74.6	0.0	30	128.6	24.7	0.0			
Queue Length 95th (m)	13/ 1	5.7	8.5	#20.0	17.5	0.0			
Internal Link Dist (m)	134.1	5.7	0.0	121.1	47.0	9.9			
Turn Pay Longth (m)	139.0	00.0	105.0	101.5	90.0				
Dage Conceity (unb)	1100	00.0	125.0	1400	440	100			
Dase Capacity (vpn)	1186	1027	543	1489	449	436			
Starvation Cap Reductin	U	U	U	0	0	0			
Spillback Cap Reductn	0	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0	0			
Reduced v/c Ratio	0.56	0.06	0.13	0.75	0.33	0.11			
Intersection Summary									
Cycle Length: 103									
Actuated Cycle Length: 82.3									
Natural Cycle: 90									
Control Type: Actuated-Uncoordinate	ed								
Maximum v/c Ratio: 0.91									
Intersection Signal Delay: 21.7				In	tersection L	OS: C			
Intersection Canacity Litilization 76.5%									
Intersection capacity cuitation 70.3% IGU Level of Service D									
# Q5th porceptile volume evenede	anaoitu au	auo may ha	longor						
# Jour percentile volume exceeds (Oueue shown is maximum after to	apacity, que	eue may be	ionger.						
Queue shown is maximum aller two cycles.									
Splits and Phases: 1: Carmen Berg	geron & HW	Y 17/HW 17	,						
· · · · · · · · · · · · · · · · · · ·	· · · ·								

AM.syn

2023 Existing Conditions - AM 2: Carmen Bergeron & Richelieu

	≯	+	4	Ť	1	ţ	~
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	SBR
Lane Configurations	7	î.	r.	1.	41L	វ	1
Traffic Volume (vph)	23	14	3	27	30	41	23
Future Volume (vph)	23	14	3	27	30	41	23
Lane Group Flow (vph)	24	17	3	168	40	106	24
Sign Control		Stop		Stop	Stop	Stop	
Intersection Summary							
0 I I T II I I I							

Control Type: Unsignalized Intersection Capacity Utilization 35.9%

Analysis Period (min) 15

ICU Level of Service A

AM.syn

2023 Existing Conditions - AM 2: Carmen Bergeron & Richelieu

2: Carmen Bergeron & Richelieu AM.syn												
	≯	+	*	4	ł	*	•	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	î,		7	î.			416			4	1
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	23	14	2	3	27	133	0	30	8	60	41	23
Future Volume (vph)	23	14	2	3	27	133	0	30	8	60	41	23
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	24	15	2	3	28	140	0	32	8	63	43	24
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total (vph)	24	17	3	168	16	24	106	24				
Volume Left (vph)	24	0	3	0	0	0	63	0				
Volume Right (vph)	0	2	0	140	0	8	0	24				
Hadj (s)	0.53	-0.05	0.53	-0.55	0.03	-0.20	0.33	-0.67				
Departure Headway (s)	5.6	5.0	5.5	4.4	5.1	4.9	5.4	4.4				
Degree Utilization, x	0.04	0.02	0.00	0.21	0.02	0.03	0.16	0.03				
Capacity (veh/h)	611	685	626	784	665	695	642	784				
Control Delay (s)	7.6	6.9	7.3	7.4	7.1	6.9	8.2	6.3				
Approach Delay (s)	7.3		7.4		7.0		7.8					
Approach LOS	А		А		А		А					
Intersection Summary												
Delay			7.5									
Level of Service			А									
Intersection Capacity Utilization			35.9%	IC	U Level of S	ervice			А			
Analysis Period (min)			15									

	٦	-	-	Ť	Ļ
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Configurations	2	ĥ	4	4	4
Traffic Volume (vph)	47	11	38	65	44
Future Volume (vph)	47	11	38	65	44
Lane Group Flow (vph)	49	37	74	148	115
Sign Control		Stop	Stop	Stop	Stop
Intersection Summary					

Control Type: Unsignalized Intersection Capacity Utilization 32.2% Analysis Period (min) 15

ICU Level of Service A

AM.syn

2023 Existing Conditions - AM 3: Poupart & Richelieu

3: Poupart & Richelieu												AM.syn
	۶	+	*	4	+	•	•	1	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	î,			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	47	11	24	14	38	18	71	65	5	15	44	50
Future Volume (vph)	47	11	24	14	38	18	71	65	5	15	44	50
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	49	12	25	15	40	19	75	68	5	16	46	53
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total (vph)	49	37	74	148	115							
Volume Left (vph)	49	0	15	75	16							
Volume Right (vph)	0	25	19	5	53							
Hadj (s)	0.53	-0.44	-0.08	0.12	-0.21							
Departure Headway (s)	5.7	4.7	4.7	4.5	4.3							
Degree Utilization, x	0.08	0.05	0.10	0.19	0.14							
Capacity (veh/h)	591	712	720	759	799							
Control Delay (s)	8.0	6.8	8.1	8.6	7.9							
Approach Delay (s)	7.5		8.1	8.6	7.9							
Approach LOS	А		А	A	А							
Intersection Summary												
Delay			8.1									
Level of Service			А									
Intersection Capacity Utilization			32.2%	ICI	U Level of Se	ervice			A			
Analysis Period (min)			15									

4: Poupart & Walmart				AM.s
	۶	1	Ļ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	4	î.	
Traffic Volume (vph)	3	138	56	
Future Volume (vph)	3	138	56	
Lane Group Flow (vph)	25	176	86	
Sign Control	Stop	Free	Free	
Intersection Summary				

Control Type: Unsignalized Intersection Capacity Utilization 26.0% Analysis Period (min) 15

ICU Level of Service A

2023 Existing Conditions - AM 4: Poupart & Walmart

	≯		•	+	1	1
	-	•)	1	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥.			4	1.	
Traffic Volume (veh/h)	3	21	29	138	56	26
Future Volume (Veh/h)	3	21	29	138	56	26
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	3	22	31	145	59	27
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110		
Linstream signal (m)						
nX platoon unblocked						
vC conflicting volume	280	72	86			
vC1_stage 1 conf vol	200	12	00			
vC2 stage 2 conf vol						
	280	72	86			
tC single (s)	64	62	4 1			
tC, single (s)	0.4	0.2	4.1			
tE (c)	3.5	33	22			
n (s)	100	08	2.2			
oM capacity (vob/b)	606	000	1510			
	090	990	1310			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	25	176	86			
Volume Left	3	31	0			
Volume Right	22	0	27			
cSH	942	1510	1700			
Volume to Capacity	0.03	0.02	0.05			
Queue Length 95th (m)	0.7	0.5	0.0			
Control Delay (s)	8.9	1.4	0.0			
Lane LOS	А	А				
Approach Delay (s)	8.9	1.4	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			17			
Intersection Canacity Utilization			26.0%			lice
Analysis Period (min)			15			100

	-	\mathbf{r}	4	+	•	۲			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	*	1	*	*	8	1			
Traffic Volume (vph)	1457	278	156	893	110	158			
Future Volume (vph)	1457	278	156	893	110	158			
Lane Group Flow (vph)	1619	309	173	992	122	176			
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases	L	2	6	Ū	U	8			
Detector Phase	2	2	1	6	8	8			
Switch Phase	2	2		U	0	0			
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0			
Minimum Split (s)	0.0 07 0	27.0	11.0	27.0	22.0	22.0			
Total Solit (s)	56.0	56.0	21.0	77.0	20.2	25.2			
Total Split (%)	54.4%	54.4%	21.0	7/ 80/	20.0	20.0			
Vollow Time (s)	04.4%	04.4% 1 C	20.4%	14.0%	20.2% 202	20.2% 202			
	4.0	4.0	4.0	4.0	3.3	3.3			
All-Red Time (S)	1.6	1.6	1.0	1.6	1.9	1.9			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0			
I otal Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2			
Lead/Lag	Lag	Lag	Lead						
Lead-Lag Optimize?	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	None			
Act Effct Green (s)	50.2	50.2	67.3	67.3	12.6	12.6			
Actuated g/C Ratio	0.55	0.55	0.74	0.74	0.14	0.14			
v/c Ratio	1.84	0.38	0.69	0.84	0.58	0.52			
Control Delay	404.3	8.6	33.2	18.1	48.9	11.6			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	404.3	8.6	33.2	18.1	48.9	11.6			
LOS	F	А	С	В	D	В			
Approach Delay	340.9			20.3	26.9				
Approach LOS	F			С	С				
Queue Length 50th (m)	~459.9	15.1	16.2	105.9	214	0.0			
Queue Length 95th (m)	#611 1	40.3	41 7	#262.7	40.8	18.1			
Internal Link Dist (m)	130 0	-0.0	71.7	181 3	95.8	10.1			
Turn Bay Length (m)	100.0	80.0	125.0	101.0	55.0				
Base Capacity (vph)	870	Q11	212	10/7	210	117			
Stonyation Can Deducto	0/9	011	313	1247	340	447			
Starvation Cap Reductin	0	0	0	0	0	0			
Spiliback Cap Reductin	0	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0	0			
Reduced v/c Ratio	1.84	0.38	0.55	0.80	0.35	0.39			
Intersection Summary									
Cycle Length: 103									
Actuated Cycle Longth: 01 4									
Netural Cycle Length. 91.4									
Natural Cycle: 150	. t.a. al								
Control Type: Actuated-Uncoordina	ated								
Maximum v/c Ratio: 1.84					e 14	00 F			
Intersection Signal Delay: 203.2	0.00/			Int	tersection L	US: F			
Intersection Capacity Utilization 11	9.9%			IC	U Level of S	Service H			
Analysis Period (min) 15									
 Volume exceeds capacity, quei 	ue is theoretica	ally infinite.							
Queue shown is maximum after	two cycles.								
# 95th percentile volume exceeds	s capacity, que	eue may be	longer.						
Queue shown is maximum after two cycles.									
Splits and Phases: 1: Carmen Bergeron & HWY 17									
	1								

2023 Existing Conditions AM 2: Carmen Bergeron & Richelieu

2: Carmen Bergeron & F	: Carmen Bergeron & Richelieu										
	۶	+	4	ł	1	Ŧ	<				
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	SBR				
Lane Configurations	r.	î.	r.	î.	ፈቤ	្ឋ	1				
Traffic Volume (vph)	14	35	14	38	72	144	35				
Future Volume (vph)	14	35	14	38	72	144	35				
Lane Group Flow (vph)	16	41	16	244	111	443	39				
Sign Control		Stop		Stop	Stop	Stop					
Intersection Summary											
••••••••••••••••••••••••••••••••••••••											

Control Type: Unsignalized Intersection Capacity Utilization 53.5%

Analysis Period (min) 15

ICU Level of Service A

2023 Existing Conditions AM 2: Carmen Bergeron & Richelieu

2: Carmen Bergeron & Richelieu PM.syn												
	≯	+	*	4	Ļ	*	•	1	*	*	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	î,		ř	î,			416			4	1
Sign Control	_	Stop			Stop			Stop			Stop	
Traffic Volume (vph)	14	35	2	14	38	182	2	72	26	255	144	35
Future Volume (vph)	14	35	2	14	38	182	2	72	26	255	144	35
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	16	39	2	16	42	202	2	80	29	283	160	39
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total (vph)	16	41	16	244	42	69	443	39				
Volume Left (vph)	16	0	16	0	2	0	283	0				
Volume Right (vph)	0	2	0	202	0	29	0	39				
Hadj (s)	0.53	0.00	0.53	-0.55	0.06	-0.26	0.35	-0.67				
Departure Headway (s)	7.1	6.5	6.8	5.7	6.1	5.8	5.9	4.9				
Degree Utilization, x	0.03	0.07	0.03	0.38	0.07	0.11	0.73	0.05				
Capacity (veh/h)	465	501	496	596	555	584	597	705				
Control Delay (s)	9.1	8.9	8.8	11.0	8.3	8.3	21.8	7.0				
Approach Delay (s)	8.9		10.8		8.3		20.6					
Approach LOS	А		В		А		С					
Intersection Summary												
Delay			15.6									
Level of Service			С									
Intersection Capacity Utilization			53.5%	IC	U Level of S	Service			А			
Analysis Period (min)			15									

3: Poupart & Richelieu						PM.syn
	۶	+	Ļ	1	Ŧ	
Lane Group	EBL	EBT	WBT	NBT	SBT	
Lane Configurations	2	î.	4	4	4	
Traffic Volume (vph)	128	69	44	165	111	
Future Volume (vph)	128	69	44	165	111	
Lane Group Flow (vph)	142	233	102	313	349	
Sign Control		Stop	Stop	Stop	Stop	
Intersection Summary						

Control Type: Unsignalized Intersection Capacity Utilization 63.9% Analysis Period (min) 15

ICU Level of Service B

2023 Existing Conditions AM 3: Poupart & Richelieu

3: Poupart & Richelieu												PM.syn
	۶	+	\mathbf{F}	1	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	î,			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	128	69	140	30	44	18	84	165	33	41	111	162
Future Volume (vph)	128	69	140	30	44	18	84	165	33	41	111	162
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	142	77	156	33	49	20	93	183	37	46	123	180
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total (vph)	142	233	102	313	349							
Volume Left (vph)	142	0	33	93	46							
Volume Right (vph)	0	156	20	37	180							
Hadj (s)	0.53	-0.43	-0.02	0.02	-0.25							
Departure Headway (s)	7.2	6.2	6.8	6.0	5.7							
Degree Utilization, x	0.28	0.40	0.19	0.52	0.55							
Capacity (veh/h)	470	533	447	564	599							
Control Delay (s)	11.8	12.1	11.4	15.3	15.4							
Approach Delay (s)	12.0		11.4	15.3	15.4							
Approach LOS	В		В	С	С							
Intersection Summary												
Delay			13.9									
Level of Service			В									
Intersection Capacity Utilization			63.9%	IC	U Level of Se	ervice			В			
Analysis Period (min)			15									

4: Poupart & Walmart				F
	۶	1	Ŧ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	4	1.	
Traffic Volume (vph)	54	282	263	
Future Volume (vph)	54	282	263	
Lane Group Flow (vph)	117	385	312	
Sign Control	Stop	Free	Free	
Intersection Summary				

Control Type: Unsignalized Intersection Capacity Utilization 55.5% Analysis Period (min) 15

ICU Level of Service B

2023 Existing Conditions AM 4: Poupart & Walmart

	≯	\mathbf{r}	•	1	↓ ·	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			4	1.	
Traffic Volume (veh/h)	54	51	65	282	263	18
Future Volume (Veh/h)	54	51	65	282	263	18
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	60	57	72	313	292	20
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX. platoon unblocked						
vC, conflicting volume	759	302	312			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	759	302	312			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	83	92	94			
cM capacity (veh/h)	353	738	1248			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	117	385	312			
Volume Left	60	72	0			
Volume Right	57	0	20			
cSH	473	1248	1700			
Volume to Capacity	0.25	0.06	0.18			
Queue Length 95th (m)	7.7	1.5	0.0			
Control Delay (s)	15.1	2.0	0.0			
Lane LOS	C.	2.0 A	0.0			
Approach Delay (s)	15.1	2.0	0.0			
Approach LOS	C	2.0	0.0			
Intersection Summary						
Average Delay			3.1			
Intersection Capacity Utilization			55.5%	ICI	U Level of Serv	/ice
Analysis Period (min)			15			-

PM.syn

	-	\rightarrow	-	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	ሻ	•	5	1
Traffic Volume (vph)	639	56	68	1079	141	45
Future Volume (vph)	639	56	68	1079	141	45
Lane Group Flow (vph)	673	59	72	1136	148	47
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	56.0	56.0	21.0	77.0	26.0	26.0
Total Split (%)	54.4%	54.4%	20,4%	74.8%	25.2%	25.2%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.5	1.5	19	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.0	5.2
	1.2	1.2	0.2	0.2	5.2	J.Z
Lead Lag Optimize?	Vas	Vas	Vac			
Recall Mode	None	None	None	None	None	None
Act Effet Groep (a)					12.2	12.2
Act Elici Green (S)	49.7	49.7	0.70	0.70	13.3	13.3
Actualeu g/C Ratio	0.59	0.59	0.70	0.70	0.10	0.10
V/C Kallo	0.05	0.07	0.18	0.92	0.50	0.17
Control Delay	17.0	3.0	5.2	24.5	44.9	12.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.0	3.0	5.2	24.5	44.9	12.1
LUS	B	А	A	C	D	В
Approach Delay	15.9			23.3	37.0	
Approach LOS	В			С	D	
Queue Length 50th (m)	77.3	0.0	3.2	135.5	26.7	0.0
Queue Length 95th (m)	138.5	5.7	8.5	#306.7	47.5	9.9
Internal Link Dist (m)	139.0			181.3	95.8	
Turn Bay Length (m)		80.0	125.0			
Base Capacity (vph)	1161	1007	537	1453	431	421
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.58	0.06	0.13	0.78	0.34	0.11
Intersection Summary						
Cycle Length: 103						
Actuated Cycle Length: 84.9						
Natural Cycle: 90						
Control Type: Actuated-Unco	oordinated					
Maximum v/c Ratio: 0.92						
Intersection Signal Delay: 22	2.0			I	ntersectio	n LOS: C
Intersection Capacity Utilizat	tion 77.7%)		10	CU Level	of Service
Analysis Period (min) 15						0.0011100
# 95th percentile volume e	xceeds ca	pacity, qu	Jeue may	/ be longe	er.	

Queue shown is maximum after two cycles.

2024 Background Conditions - AM 2: Carmen Bergeron & Richelieu

	≯	-	4	←	Ť	Ļ	∢	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	SBR	
Lane Configurations	ľ	f,	ľ	el el	र्स कि	ę	1	
Traffic Volume (vph)	23	14	3	27	30	41	23	
Future Volume (vph)	23	14	3	27	30	41	23	
Lane Group Flow (vph)	24	17	3	168	40	106	24	
Sign Control		Stop		Stop	Stop	Stop		
Intersection Summary								
Control Type: Unsignalized								
Intersection Capacity Utilizatio	n 35.9%			IC	U Level c	of Service	А	

Intersection Capacity Utilization 35.9% Analysis Period (min) 15

2024 Background Conditions - AM 2: Carmen Bergeron & Richelieu

2: Carmen Bergero	2: Carmen Bergeron & Richelieu AM.syn													
	٦	+	*	4	ł	•	•	1	*	*	ţ	~		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	ľ	4Î		1	¢Î			4î b			ŧ	1		
Sign Control		Stop			Stop			Stop			Stop			
Traffic Volume (vph)	23	14	2	3	27	133	0	30	8	60	41	23		
Future Volume (vph)	23	14	2	3	27	133	0	30	8	60	41	23		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	24	15	2	3	28	140	0	32	8	63	43	24		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2						
Volume Total (vph)	24	17	3	168	16	24	106	24						
Volume Left (vph)	24	0	3	0	0	0	63	0						
Volume Right (vph)	0	2	0	140	0	8	0	24						
Hadj (s)	0.53	-0.05	0.53	-0.55	0.03	-0.20	0.33	-0.67						
Departure Headway (s)	5.6	5.0	5.5	4.4	5.1	4.9	5.4	4.4						
Degree Utilization, x	0.04	0.02	0.00	0.21	0.02	0.03	0.16	0.03						
Capacity (veh/h)	611	685	626	784	665	695	642	784						
Control Delay (s)	7.6	6.9	7.3	7.4	7.1	6.9	8.2	6.3						
Approach Delay (s)	7.3		7.4		7.0		7.8							
Approach LOS	А		А		А		А							
Intersection Summary														
Delay			7.5											
Level of Service			А											
Intersection Capacity Utilization	ation		35.9%	IC	CU Level of	of Service			А					
Analysis Period (min)			15											

	≯	→	+	1	ŧ	
Lane Group	EBL	EBT	WBT	NBT	SBT	
Lane Configurations	۲	4Î	4	\$	4	
Traffic Volume (vph)	47	11	38	65	44	
Future Volume (vph)	47	11	38	65	44	
Lane Group Flow (vph)	49	37	74	148	115	
Sign Control		Stop	Stop	Stop	Stop	
Intersection Summary						

ICU Level of Service A

Control Type: Unsignalized

Intersection Capacity Utilization 32.2% Analysis Period (min) 15

2024 Background Conditions - AM 3: Poupart & Richelieu

3: Poupart & Riche	: Poupart & Richelieu AM.syn													
	٦	+	*	4	Ļ	•	•	1	*	*	Ŧ	~		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	٦	eî 🕺			÷			÷			÷			
Sign Control		Stop			Stop			Stop			Stop			
Traffic Volume (vph)	47	11	24	14	38	18	71	65	5	15	44	50		
Future Volume (vph)	47	11	24	14	38	18	71	65	5	15	44	50		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	49	12	25	15	40	19	75	68	5	16	46	53		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1									
Volume Total (vph)	49	37	74	148	115									
Volume Left (vph)	49	0	15	75	16									
Volume Right (vph)	0	25	19	5	53									
Hadj (s)	0.53	-0.44	-0.08	0.12	-0.21									
Departure Headway (s)	5.7	4.7	4.7	4.5	4.3									
Degree Utilization, x	0.08	0.05	0.10	0.19	0.14									
Capacity (veh/h)	591	712	720	759	799									
Control Delay (s)	8.0	6.8	8.1	8.6	7.9									
Approach Delay (s)	7.5		8.1	8.6	7.9									
Approach LOS	А		А	А	А									
Intersection Summary														
Delay			8.1											
Level of Service			А											
Intersection Capacity Utilization	ation		32.2%	IC	U Level o	of Service			А					
Analysis Period (min)			15											

	≯	Ť	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	Y	Ę	el 🗍
Traffic Volume (vph)	3	138	56
Future Volume (vph)	3	138	56
Lane Group Flow (vph)	25	176	86
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Control Type: Unsignalized Intersection Capacity Utilization 26.0% Analysis Period (min) 15

ICU Level of Service A

AM.syn

	≯	\rightarrow	1	1	Ŧ	<
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W.			ជ	1.	
Traffic Volume (veh/h)	3	21	29	138	56	26
Future Volume (Veh/h)	3	21	29	138	56	26
Sign Control	Stop		-	Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	3	22	31	145	59	27
Pedestrians	•		•.			
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONC	NONC	
Linstream signal (m)						
nX nlatoon unblocked						
vC. conflicting volume	280	72	86			
vC1 stage 1 conf vol	200	12	00			
vC1, stage 2 confivel						
	280	72	88			
tC single (s)	61	62	/ 1			
to, single (s) $tc 2 stars (s)$	0.4	0.2	4.1			
$t \in (a)$	3 5	2.2	2.2			
n (s)	100	0.0 00	۲.۲ ۵۵			
oM conscitu (voh/h)	606	000	90 1510			
	090	990	1510			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	25	176	86			
Volume Left	3	31	0			
Volume Right	22	0	27			
cSH	942	1510	1700			
Volume to Capacity	0.03	0.02	0.05			
Queue Length 95th (m)	0.7	0.5	0.0			
Control Delay (s)	8.9	1.4	0.0			
Lane LOS	А	А				
Approach Delay (s)	8.9	1.4	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			17			
Intersection Canacity Litiliza	ation		26.0%	IC		of Service
Analysis Period (min)			15			

2024 Background Conditions - PM 1: Carmen Bergeron & HWY 17/HW 17

PM	.svn
	,

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	*	1	3	•	5	1
Traffic Volume (vph)	1486	278	156	911	110	158
Future Volume (vph)	1486	278	156	911	110	158
Lane Group Flow (vph)	1651	309	173	1012	122	176
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	56.0	56.0	21.0	77.0	26.0	26.0
Total Split (%)	54.4%	54.4%	20.4%	74.8%	25.2%	25.2%
Yellow Time (s)	46	4.6	46	4.6	3.3	3.3
All-Red Time (s)	1.0	1.6	1.0	1.0	1 9	1 9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (c)	6.0	6.0	6.0	6.0	5.0	5.2
	1.2	0.2	Load	0.2	J.Z	J.Z
Lead Lag Optimize?	Vac	Vas	Vac			
	None	None	None	None	None	Nono
Act Effet Groon (a)		50.2	67.2	67.2	12 6	10 6
Actuated a/C Datia	0.LC	0.55	07.3	07.3	0.14	0.14
Actualeu g/C Ratio	0.00	0.00	0.74	0.74	0.14	0.14
V/U KallU Central Delay	1.00	0.30	0.09	0.00	0.00	0.52
Control Delay	420.4	ŏ.ŏ	33.2	19.3	48.9	11.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	420.4	8.8	33.2	19.3	48.9	11.6
LUS		A	C	В	D	В
Approach Delay	355.5			21.4	26.9	
Approach LOS	F	4- 4	100	C	C	
Queue Length 50th (m)	~472.3	15.4	16.2	111.7	21.4	0.0
Queue Length 95th (m)	#624.9	40.7	41.7	#272.2	40.8	18.1
Internal Link Dist (m)	139.0			181.3	95.8	
Turn Bay Length (m)		80.0	125.0			
Base Capacity (vph)	879	810	313	1247	348	447
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.88	0.38	0.55	0.81	0.35	0.39
Intersection Summary						
Cycle Length: 103						
Actuated Cycle Length: 91.	.4					
Natural Cycle: 150						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 1.88						
Intersection Signal Delay: 2	212.1			Ir	ntersectio	n LOS: F
Intersection Capacity Utiliz	ation 121.79	6](CU Level	of Service
Analysis Period (min) 15						
~ Volume exceeds capac	city, queue is	s theoreti	cally infin	ite.		

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & HWY 17/HW 17

	۶	-	∢	+	t	Ļ	~
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT	SBR
Lane Configurations	۳.	ef 🔰	٦	eî.	eî îr	ب	1
Traffic Volume (vph)	14	35	14	38	72	144	35
Future Volume (vph)	14	35	14	38	72	144	35
Lane Group Flow (vph)	16	41	16	244	111	443	39
Sign Control		Stop		Stop	Stop	Stop	
Intersection Summary							
Control Type: Unsignalized							
Intersection Capacity Utilization	on 53.5%			IC	U Level c	of Service	А

Intersection Capacity Utilization 53.5% Analysis Period (min) 15

2024 Background Conditions - PM 2: Carmen Bergeron & Richelieu

	۶	+	*	4	t	×	-	1	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	el el		ľ	el el			đ þ			ا	1
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	14	35	2	14	38	182	2	72	26	255	144	35
Future Volume (vph)	14	35	2	14	38	182	2	72	26	255	144	35
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	16	39	2	16	42	202	2	80	29	283	160	39
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total (vph)	16	41	16	244	42	69	443	39				
Volume Left (vph)	16	0	16	0	2	0	283	0				
Volume Right (vph)	0	2	0	202	0	29	0	39				
Hadj (s)	0.53	0.00	0.53	-0.55	0.06	-0.26	0.35	-0.67				
Departure Headway (s)	7.1	6.5	6.8	5.7	6.1	5.8	5.9	4.9				
Degree Utilization, x	0.03	0.07	0.03	0.38	0.07	0.11	0.73	0.05				
Capacity (veh/h)	465	501	496	596	555	584	597	705				
Control Delay (s)	9.1	8.9	8.8	11.0	8.3	8.3	21.8	7.0				
Approach Delay (s)	8.9		10.8		8.3		20.6					
Approach LOS	А		В		А		С					
Intersection Summary												
Delay			15.6									
Level of Service			С									
Intersection Capacity Utilizat	tion		53.5%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

PM.syn

Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Configurations	٦	ef 🗧	\$	\$	4
Traffic Volume (vph)	128	69	44	165	111
Future Volume (vph)	128	69	44	165	111
Lane Group Flow (vph)	142	233	102	313	349
Sign Control		Stop	Stop	Stop	Stop

ICU Level of Service B

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 63.9% Analysis Period (min) 15

2024 Background Conditions - PM 3: Poupart & Richelieu

	٦	+	7	4	÷	×	•	1	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	el 🗍			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	128	69	140	30	44	18	84	165	33	41	111	162
Future Volume (vph)	128	69	140	30	44	18	84	165	33	41	111	162
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	142	77	156	33	49	20	93	183	37	46	123	180
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total (vph)	142	233	102	313	349							
Volume Left (vph)	142	0	33	93	46							
Volume Right (vph)	0	156	20	37	180							
Hadj (s)	0.53	-0.43	-0.02	0.02	-0.25							
Departure Headway (s)	7.2	6.2	6.8	6.0	5.7							
Degree Utilization, x	0.28	0.40	0.19	0.52	0.55							
Capacity (veh/h)	470	533	447	564	599							
Control Delay (s)	11.8	12.1	11.4	15.3	15.4							
Approach Delay (s)	12.0		11.4	15.3	15.4							
Approach LOS	В		В	С	С							
Intersection Summary												
Delay			13.9									
Level of Service			В									
Intersection Capacity Utiliza	tion		63.9%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

PM.syn

	۶	1	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	Y	ર્સ	ef 🗧
Traffic Volume (vph)	54	282	263
Future Volume (vph)	54	282	263
Lane Group Flow (vph)	117	385	312
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 55.5% Analysis Period (min) 15

ICU Level of Service B

PM.syn

	٭	\mathbf{r}	1	†	ŧ	<
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W.			្ន	1.	
Traffic Volume (veh/h)	54	51	65	282	263	18
Future Volume (Veh/h)	54	51	65	282	263	18
Sign Control	Stop	•		Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0 90	0.90	0.90	0.90	0.90
Hourly flow rate (yph)	60	57	72	313	292	20
Pedestrians	00	01	12	010	202	20
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage yeb				NULLE	NOTIE	
Upstroom signal (m)						
opsileani signal (m)						
pA, platoon unblocked	750	200	240			
vC, conflicting volume	159	302	312			
vC1, stage 1 cont vol						
VC2, stage 2 cont voi	750	200	240			
vCu, unblocked vol	759	302	312			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
t⊢ (s)	3.5	3.3	2.2			
p0 queue tree %	83	92	94			
cM capacity (veh/h)	353	738	1248			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	117	385	312			
Volume Left	60	72	0			
Volume Right	57	0	20			
cSH	473	1248	1700			
Volume to Capacity	0.25	0.06	0.18			
Queue Length 95th (m)	7.7	1.5	0.0			
Control Delay (s)	15.1	2.0	0.0			
Lane LOS	C	A				
Approach Delay (s)	15.1	2.0	0.0			
Approach LOS	С		010			
Interception Summer						
			2.4			
Average Delay			3.1			£ 0
Intersection Capacity Utiliz	ation		55.5%	IC		of Service
Analysis Period (min)			15			

Lane Group EBT EBR WBL WBT NBL NBR Lane Configurations Image: Configuratio
Lane Configurations Image: Configuration in the image: Configuration in the image: Configuration in the image: Control in the image: Contheter in the image: Control in the image: Contheter in the image:
Traffic Volume (vph)17976570365316649Future Volume (vph)17976570365316649Lane Group Flow (vph)18926874384517552Turn TypeNAPermpm+ptNAProtPermProtected Phases2168Detector Phase22168Switch Phase22168Minimun Initial (s)5.05.05.05.05.05.0Minimum Split (s)7.27.27.27.26.26.2Total Split (s)7.27.27.27.26.26.2Total Split (%)35.0%35.0%35.0%35.0%30.1%30.1%Yellow Time (s)4.64.64.64.61.91.9Lost Time Adjust (s)0.00.00.00.00.00.0Total Lost Time (s)6.26.26.25.25.25.2Lead-Lag Optimize?YesYesYesYesYesRecall ModeNoneNoneNoneNoneNoneNoneAct Effct Green (s)1.01.02.12.11.01.0Act ated g/C Ratio0.070.70.40.40.070.07v/c Ratio8.160.410.308.231.510.34Control Delay3228.914.78.33267.5<
Future Volume (vph)17976570365316649Lane Group Flow (vph)18926874384517552Turn TypeNAPermpm+ptNAProtPermProtected Phases2168Detector Phase22168Switch Phase22168Minimum Initial (s)5.05.05.05.05.05.0Minimum Split (s)7.27.27.27.26.26.2Total Split (s)7.27.27.27.26.26.2Total Split (s)1.61.61.61.61.91.9Lost Time (s)4.64.64.64.63.33.3All-Red Time (s)6.26.26.26.25.25.2Lead-Lag Optimize?YesYesYesYesRecall ModeNoneNoneNoneNoneNoneAct Effct Green (s)1.01.02.12.11.01.0Actuated g/C Ratio0.070.070.40.140.070.07v/c Ratio8.160.410.308.231.510.34Control Delay3228.914.78.33267.5288.512.7Queue Delay0.00.00.00.00.00.00.0Total Lolay3228.914.78.33267.5288.512.7 <tr<< td=""></tr<<>
Lane Group Flow (vph) 1892 68 74 3845 175 52 Turn Type NA Perm pm+pt NA Prot Perm Protected Phases 2 1 6 8 Permitted Phases 2 2 1 6 8 Detector Phase 2 2 1 6 8 Switch Phase 2 2 1 6 8 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 7.2 7.2 7.2 7.2 6.2 6.2 Total Split (%) 35.0% 35.0% 35.0% 30.1% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 1.6 1.6 1.9 1.9 Lost Time Agiust (s) 0.0 0.0 0.0 0.0 0.0 1.0 Lead/Lag Lag Lag Lag Lag Lag 1.0 1.0
Turn Type NA Perm pm+pt NA Prot Perm Protected Phases 2 1 6 8 Permitted Phases 2 2 1 6 8 Detector Phase 2 2 1 6 8 Switch Phase 2 2 1 6 8 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 7.2 7.2 7.2 6.2 6.2 Total Split (s) 7.2 7.2 7.2 6.2 6.2 Total Split (s) 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 1.6 1.9 1.9 Lost Time (s) 1.6 1.6 1.6 1.9 1.9 Lost Time (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
Protected Phases 2 1 6 8 Permitted Phases 2 6 8 Detector Phase 2 2 1 6 8 Switch Phase 2 2 1 6 8 8 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 7.2 7.2 7.2 7.2 6.2 6.2 Total Split (s) 7.2 7.2 7.2 6.2 6.2 6.2 Total Split (%) 35.0% 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 1.6 1.6 1.9 1.9 Lost Time (s) 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time (s) 6.2 6.2 6.2 5.2 5.2 5.2 Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes Yes
Permitted Phases 2 6 8 Detector Phase 2 2 1 6 8 8 Switch Phase
Detector Phase 2 2 1 6 8 8 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 27.2 27.2 11.2 27.2 23.2 23.2 Total Split (s) 7.2 7.2 7.2 7.2 6.2 6.2 Total Split (%) 35.0% 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 4.6 3.3 3.3 All-Red Time (s) 1.6 1.6 1.6 1.9 1.9 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 5.2 5.2 5.2 Lead/Lag Lag Lag Lag Lag Lag 1.0 1.0 Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Act Effct Green (s)
Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 27.2 27.2 11.2 27.2 23.2 23.2 Total Split (s) 7.2 7.2 7.2 7.2 6.2 6.2 Total Split (%) 35.0% 35.0% 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 4.6 3.3 3.3 All-Red Time (s) 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 5.2 5.2 1.2 Lead/Lag Lag Lag Lead Lead 1.0 1.0 Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.0 <
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 27.2 27.2 11.2 27.2 23.2 23.2 Total Split (s) 7.2 7.2 7.2 6.2 6.2 Total Split (%) 35.0% 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 4.6 3.3 3.3 All-Red Time (s) 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 5.2 5.2 5.2 Lead/Lag Lag Lag Lag Lead 1.0 1.0 Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Act Effct Green (s) 1.0 1.0
Minimum Split (s) 27.2 27.2 11.2 27.2 23.2 23.2 Total Split (s) 7.2 7.2 7.2 7.2 6.2 6.2 Total Split (%) 35.0% 35.0% 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 4.6 3.3 3.3 All-Red Time (s) 1.6 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 5.2 5.2 Lead/Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode None None None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Act ated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07
Total Split (s) 7.2 7.2 7.2 7.2 6.2 6.2 Total Split (%) 35.0% 35.0% 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 4.6 3.3 3.3 All-Red Time (s) 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 5.2 5.2 Lead/Lag Lag Lag Lead Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 V/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5
Total Split (%) 35.0% 35.0% 35.0% 35.0% 30.1% 30.1% Yellow Time (s) 4.6 4.6 4.6 4.6 3.3 3.3 All-Red Time (s) 1.6 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 5.2 5.2 Lead/Lag Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 Vc Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5
Yellow Time (s) 4.6 4.6 4.6 4.6 3.3 3.3 All-Red Time (s) 1.6 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 6.2 5.2 5.2 Lead/Lag Lag Lag Lag Lead Lead Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Recall Mode None None None None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 <t< td=""></t<>
All-Red Time (s) 1.6 1.6 1.6 1.6 1.6 1.6 1.9 1.9 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 6.2 5.2 5.2 Lead/Lag Lag Lag Lead Lead Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Recall Mode None None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3117.4 3206.0 225.3 328.5 12.7 2.8
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.2 6.2 6.2 6.2 5.2 5.2 Lead/Lag Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 325.0 Approach LOS F
Loor Finite Adjust (s) 6.0 <th6.0< th=""> 7 <th7< th=""></th7<></th6.0<>
Lead/Lag Lag Lag Lead Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode None None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 325.3 Approach LOS F F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0<
Lag Lag Lag Leau Lead-Lag Optimize? Yes Yes Yes Recall Mode None None None None None None Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 3267.5 288.5 12.7 Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 225.3
Recall Mode None Actuated g/C Ratio 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0
Act Effct Green (s) 1.0 1.0 2.1 2.1 1.0 1.0 Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 Approach LOS F F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 74.4
Actuated g/C Ratio 0.07 0.07 0.14 0.14 0.07 0.07 V/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 3267.5 288.5 12.7 Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 94.8
Notated gro Natio 0.07 0.14 0.14 0.14 0.07 0.07 v/c Ratio 8.16 0.41 0.30 8.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 328.5 Approach LOS F F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 94.8
Vic ratio 0.10 0.41 0.30 6.23 1.51 0.34 Control Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 3267.5 288.5 12.7 Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 30.0 125.0
Control Delay 3220.9 14.7 6.3 3207.5 200.5 12.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3228.9 14.7 8.3 3267.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 Approach LOS F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 94.8
Queue Delay 0.0 Queue Length 50th (m) 3117.4 3206.0 225.3 Z Queue Length 50th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 Yes to the stand the stand the stand the stand the stand the stand the
Initial Delay 3228.9 14.7 8.3 3207.5 288.5 12.7 LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 Approach LOS F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 Turn Bay Length (m) 80.0 125.0
LOS F B A F F B Approach Delay 3117.4 3206.0 225.3 Approach LOS F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 94.8 Turn Bay Length (m) 80.0 125.0 125.0 125.0
Approach Delay 3117.4 3206.0 225.3 Approach LOS F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 Turn Bay Length (m) 80.0 125.0
Approach LOS F F F Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 Turn Bay Length (m) 80.0 125.0
Queue Length 50th (m) ~36.6 0.0 1.0 ~77.1 ~4.4 0.0 Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 Turn Bay Length (m) 80.0 125.0
Queue Length 95th (m) #81.5 #5.2 2.8 #133.7 #21.0 #4.4 Internal Link Dist (m) 194.0 273.3 94.8 Turn Bay Length (m) 80.0 125.0
Internal Link Dist (m) 194.0 273.3 94.8 Turn Bay Length (m) 80.0 125.0
Turn Bay Length (m) 80.0 125.0
, , , , , , , , , , , , , , , , , , , ,
Base Capacity (vph) 232 167 245 1908 116 152
Starvation Cap Reductn 0
Spillback Cap Reductn 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0
Reduced v/c Ratio 8.16 0.41 0.30 2.02 1.51 0.34
Intersection Summary
Cycle Length: 20.6
Actuated Cycle Length: 14.8
Natural Cycle: 150
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 8 23
Intersection LOS: F
Intersection Canacity Utilization 125.8%
Analysis Pariod (min) 15
 Volume exceeds canacity queue is theoretically infinite

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2045 Background Conditions - AM 2: Carmen Bergeron & Richelieu

	≯	→	1	+	1	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Configurations	5	1.	5	1.	ፈቴ		4	1	
Traffic Volume (vph)	23	23	22	52	30	70	41	23	
Future Volume (vph)	23	23	22	52	30	70	41	23	
Lane Group Flow (vph)	24	26	23	226	48	0	117	24	
Turn Type	Perm	NA	Perm	NA	NA	Perm	NA	Perm	
Protected Phases		4		8	2		6		
Permitted Phases	4		8			6		6	
Detector Phase	4	4	8	8	2	6	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.0	10.0	10.0	10.0	13.9		13.9	13.9	
Actuated g/C Ratio	0.35	0.35	0.35	0.35	0.49		0.49	0.49	
v/c Ratio	0.06	0.04	0.05	0.34	0.03		0.16	0.03	
Control Delay	6.4	5.9	6.3	3.9	4.7		7.1	3.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	6.4	5.9	6.3	3.9	4.7		7.1	3.3	
LOS	А	А	Α	А	А		А	А	
Approach Delay		6.1		4.1	4.7		6.4		
Approach LOS		Α		А	А		Α		
Queue Length 50th (m)	0.6	0.6	0.6	1.4	0.4		3.2	0.0	
Queue Length 95th (m)	2.5	2.5	2.4	7.2	1.6		7.8	1.7	
Internal Link Dist (m)		33.9		74.5	69.2		94.8		
Turn Bay Length (m)			25.0						
Base Capacity (vph)	690	1106	827	1055	2355		1079	1113	
Starvation Cap Reductn	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.03	0.02	0.03	0.21	0.02		0.11	0.02	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 28.4									
Natural Cycle: 45									
Control Type: Actuated-Unco	oordinated								
Maximum v/c Ratio: 0.34									
Intersection Signal Delay: 5.	0			Ir	ntersectio	n LOS: A			
Intersection Capacity Utilizat	tion 40.1%			10	CU Level	of Service	eΑ		
A set of Destation AF									

Analysis Period (min) 15

AM.syn

Splits and Phases:	2: Carmen Bergeron & Richelieu		
↑ ø2		<u></u> 04	
23 s		22 s	
Ø6		₩ Ø8	
23 s		22 s	
2045 Background Conditions - AM 3: Poupart & Richelieu

	۶	-	-	-	1	†	1	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	ĥ		4.		đ b		4	
Traffic Volume (vph)	47	11	14	38	216	111	15	58	
Future Volume (vph)	47	11	14	38	216	111	15	58	
Lane Group Flow (vph)	49	89	0	74	0	349	0	130	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.0	10.0		10.0		17.8		17.8	
Actuated g/C Ratio	0.35	0.35		0.35		0.62		0.62	
v/c Ratio	0.11	0.15		0.13		0.23		0.13	
Control Delay	7.2	3.4		5.9		5.8		4.4	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	7.2	3.4		5.9		5.8		4.4	
LOS	А	A		A		A		А	
Approach Delay		4.7		5.9		5.8		4.4	
Approach LOS		А		A		Α		Α	
Queue Length 50th (m)	1.3	0.3		1.4		5.2		2.0	
Queue Length 95th (m)	4.5	4.2		5.3		9.8		6.5	
Internal Link Dist (m)		59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0								
Base Capacity (vph)	785	991		987		1963		1277	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.06	0.09		0.07		0.18		0.10	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 28.7									
Natural Cycle: 45									
Control Type: Actuated-Uncoc	ordinated								
Maximum v/c Ratio: 0.23									
Intersection Signal Delay: 5.3				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilizatio	n 36.7%	I		(CU Level	of Service	Α		
Analysis Period (min) 15									

AM.syn

Splits and Phases:	3: Poupart & Richelieu		
1 ø2		<u></u>	
23 s		22 s	
Ø6		√ Ø8	
23 s		22 s	

4: Poupart & Walm	art Driv	eway		AM.sy
	٦	Ť	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	Y	-4 ↑	↑ 1,	
Traffic Volume (vph)	3	329	119	
Future Volume (vph)	3	329	119	
Lane Group Flow (vph)	25	377	152	
Sign Control	Stop	Free	Free	
Intersection Summary				
Control Type: Unsignalized				

Control Type: Unsignalized Intersection Capacity Utilization 28.2% Analysis Period (min) 15

	٦	\mathbf{i}	1	†	↓	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			412	A 1.	•=
Traffic Volume (veh/h)	3	21	29	329	119	26
Future Volume (Veh/h)	3	21	29	329	119	26
Sign Control	Stop		•	Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (yph)	3	22	31	346	125	27
Pedestrians	Ŭ		01	010	120	-1
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110	110110	
Unstream signal (m)					102	
pX platoon unblocked					102	
vC conflicting volume	374	76	152			
vC1_stage 1 conf vol	0/1	10	102			
vC2_stage 2 conf vol						
vCu_unblocked vol	374	76	152			
tC, single (s)	6.8	6.9	4 1			
tC 2 stage (s)	0.0	0.0				
tE (s)	35	33	22			
n0 queue free %	99	98	98			
cM capacity (veh/h)	587	970	1426			
		010	1120			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	25	146	231	83	69	
Volume Left	3	31	0	0	0	
Volume Right	22	0	0	0	27	
cSH	899	1426	1700	1700	1700	
Volume to Capacity	0.03	0.02	0.14	0.05	0.04	
Queue Length 95th (m)	0.6	0.5	0.0	0.0	0.0	
Control Delay (s)	9.1	1.7	0.0	0.0	0.0	
Lane LOS	А	А				
Approach Delay (s)	9.1	0.7		0.0		
Approach LOS	А					
Intersection Summary						
Average Delav			0.9			
Intersection Capacity Utiliz	ation		28.2%	10	CU Level o	of Service
Analysis Period (min)	-		15			

	-	-				
Lane Group	EBT	WBT	Ø2	Ø5		
Lane Configurations	^	* *				
Traffic Volume (vph)	1891	3896				
Future Volume (vph)	1891	3896				
Lane Group Flow (vph)	2101	4329				
Turn Type	NA	NA				
Protected Phases	4	8	2	5		
Permitted Phases						
Detector Phase	4	8				
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0		
Minimum Split (s)	22.0	22.0	22.0	22.0		
Total Split (s)	128.0	128.0	22.0	22.0		
Total Split (%)	85.3%	85.3%	15%	15%		
Yellow Time (s)	3.5	3.5	3.5	3.5		
All-Red Time (s)	0.5	0.5	0.5	0.5		
Lost Time Adjust (s)	0.0	0.0				
Total Lost Time (s)	4.0	4.0				
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max		
Act Effct Green (s)	124.0	124.0				
Actuated g/C Ratio	0.83	0.83				
v/c Ratio	0.84	1.72				
Control Delay	11.3	346.2				
Queue Delay	0.0	0.0				
Total Delay	11.3	346.2				
LOS	В	F				
Approach Delay	11.3	346.2				
Approach LOS	В	F				
Queue Length 50th (m)	149.4	~984.2				
Queue Length 95th (m)	181.7	#998.3				
Internal Link Dist (m)	116.5	194.0				
Turn Bay Length (m)						
Base Capacity (vph)	2512	2512				
Starvation Cap Reductn	0	0				
Spillback Cap Reductn	0	0				
Storage Cap Reductn	0	0				
Reduced v/c Ratio	0.84	1.72				
Intersection Summary						
Cycle Length: 150						
Actuated Cycle Length: 15	0					
Natural Cycle: 150						
Control Type: Actuated-Un	coordinated	ł				
Maximum v/c Ratio: 1.72						
Intersection Signal Delay:	236.8			In	tersection LOS: F	
Intersection Capacity Utiliz	ation 127.3	%		IC	CU Level of Service H	
Analysis Period (min) 15						
~ Volume exceeds capac	city, queue i	s theoretic	ally infinit	te.		

AM.syn

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

¶ø2	▶ ₽Ø4	
22 s	128 s	
▲ Ø5	₩ Ø8	
22 s	128 s	

	-	\rightarrow	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	۲	44	5	1
Traffic Volume (vph)	4367	305	162	2759	127	161
Future Volume (vph)	4367	305	162	2759	127	161
Lane Group Flow (vph)	4597	321	171	2904	134	169
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
Lead/Lag	Lao	Lag	Lead			-
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	1.0	1.0	4.8	4.8	1.0	1.0
Actuated g/C Ratio	0.06	0.06	0.27	0.27	0.06	0.06
v/c Ratio	23.34	0.90	0.56	3.23	1.35	0.68
Control Delay	10052.1	39.3	12.2	1017.7	240.2	22.6
Queue Delav	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10052.1	39.3	12.2	1017.7	240.2	22.6
LOS	F	D	В	F	F	С
Approach Delay	9398.6	_		961.8	118.8	
Approach LOS	F			F	F	
Queue Lenath 50th (m)	~164.8	1.1	2.6	~81.6	~6.5	0.0
Queue Length 95th (m)	#182.8	#16.1	5.7	#98.7	#16.9	#9.5
Internal Link Dist (m)	194.0		0.1	273.3	94.8	
Turn Bay Length (m)	10110	80.0	125.0	210.0	01.0	
Base Capacity (vph)	197	355	304	1621	99	247
Starvation Cap Reducto	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	23.34	0.90	0.56	1 79	1 35	0.68
Interspection Summer	_0.01	0.00	5.00			0.00
Cycle Length: 20.6	_					
Actuated Cycle Length: 17.	1					
Natural Cycle: 150						
Control Type: Actuated-Und	coordinated					
Maximum v/c Ratio: 23.34	000 5					
Intersection Signal Delay: 5	932.5			Ir	ntersectio	n LOS: F
Intersection Capacity Utiliza	ation 159.0%	/o		10	JU Level	of Service
Analysis Period (min) 15						
 Volume exceeds capac 	ity, queue is	s theoreti	cally infin	ite.		

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2045 Background Conditions - PM 2: Carmen Bergeron & Richelieu

	≯	-	4	+	1	1	1	Ļ	~
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	×	1	×	1		ፈተሴ			1
Traffic Volume (vph)	14	62	27	54	2	72	288	144	35
Future Volume (vph)	14	62	27	54	2	72	288	144	35
Lane Group Flow (vph)	15	67	28	270	0	126	0	455	37
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm
Protected Phases		4	. •	8		2		6	
Permitted Phases	4		8	-	2	_	6	-	6
Detector Phase	4	4	8	8	2	2	6	6	6
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	23.0
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	51.1%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	Min
Act Effct Green (s)	10.5	10.5	10.5	10.5		21.1		21.1	21.1
Actuated g/C Ratio	0.30	0.30	0.30	0.30		0.60		0.60	0.60
v/c Ratio	0.05	0.13	0.08	0.44		0.07		0.60	0.04
Control Delay	10.4	10.5	10.5	6.1		3.6		13.0	2.5
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0
Total Delay	10.4	10.5	10.5	6.1		3.6		13.0	2.5
LOS	В	В	В	А		А		В	А
Approach Delay		10.5		6.5		3.6		12.2	
Approach LOS		В		А		А		В	
Queue Length 50th (m)	0.7	3.0	1.3	2.6		1.0		17.8	0.0
Queue Length 95th (m)	3.2	8.5	4.8	13.7		3.6		#58.3	2.5
Internal Link Dist (m)		33.9		74.5		69.2		94.8	
Turn Bay Length (m)			25.0						
Base Capacity (vph)	475	907	648	905		1862		779	934
Starvation Cap Reductn	0	0	0	0		0		0	0
Spillback Cap Reductn	0	0	0	0		0		0	0
Storage Cap Reductn	0	0	0	0		0		0	0
Reduced v/c Ratio	0.03	0.07	0.04	0.30		0.07		0.58	0.04
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 35.3									
Natural Cycle: 55									
Control Type: Actuated-Unco	ordinated								
Maximum v/c Ratio: 0.60									
Intersection Signal Delay: 9.3				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilization	on 54.3%	1		10	CU Level	of Service	eΑ		
Analysis Period (min) 15									

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Carmen Bergeron & Richelieu

2045 Background Conditions - PM 3: Poupart & Richelieu

	۶	-	4	-	1	1	1	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	1.		4		ፈቴ		4	
Traffic Volume (vph)	128	69	30	44	180	194	41	159	
Future Volume (vph)	128	69	30	44	180	194	41	159	
Lane Group Flow (vph)	135	385	0	97	0	428	0	381	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	11.2	11.2		11.2		12.3		12.3	
Actuated g/C Ratio	0.35	0.35		0.35		0.39		0.39	
v/c Ratio	0.31	0.52		0.19		0.46		0.58	
Control Delay	10.6	5.3		7.8		8.7		9.4	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	10.6	5.3		7.8		8.7		9.4	
LOS	В	Α		Α		Α		A	
Approach Delay		6.7		7.8		8.7		9.4	
Approach LOS		A		A		A		A	
Queue Length 50th (m)	3.9	2.0		2.1		6.3		8.2	
Queue Length 95th (m)	15.8	16.4		10.4		17.2		28.4	
Internal Link Dist (m)	00.0	59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0	4000		007		4450		070	
Base Capacity (vph)	/13	1032		835		1456		979	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.19	0.37		0.12		0.29		0.39	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 31.7									
Natural Cycle: 45									
Control Type: Actuated-Uncod	ordinated								
Maximum v/c Ratio: 0.58									
Intersection Signal Delay: 8.1				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilization	on 76.4%			10	CU Level	of Service	e D		
Analysis Period (min) 15									

Splits and Phases:	3: Poupart & Richelieu		
↑ ø₂		<u></u> ø₄	
23 s		22 s	
Ø6		₩ Ø8	
23 s		22 s	

4: Poupart & Walma	art Drive	eway		PM.sy
	۶	1	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	-4 ↑	A1⊅	
Traffic Volume (vph)	54	407	467	
Future Volume (vph)	54	407	467	
Lane Group Flow (vph)	111	496	511	
Sign Control	Stop	Free	Free	
Intersection Summary				
Control Type: Unsignalized				

Intersection Capacity Utilization 44.6% Analysis Period (min) 15

	≯	\rightarrow	1	Ť	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4 ∿	A1	
Traffic Volume (veh/h)	54	51	65	407	467	18
Future Volume (Veh/h)	54	51	65	407	467	18
Sian Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	57	54	68	428	492	19
Pedestrians	01	01	00	120	102	10
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONE	NONE	
Linstream signal (m)					102	
nX platoon unblocked					102	
vC conflicting volume	852	256	511			
vC1_stage 1 conf vol	052	200	511			
vC2 stage 2 confivel						
	852	256	511			
tC single (s)	6.8	60	/ 1			
(C, Single (S))	0.0	0.9	4.1			
tE(s)	35	33	2.2			
n (s)	9.0	0.0	2.2			
cM capacity (yeb/b)	280	744	1050			
	200	/ 44	1050			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	111	211	285	328	183	
Volume Left	57	68	0	0	0	
Volume Right	54	0	0	0	19	
cSH	401	1050	1700	1700	1700	
Volume to Capacity	0.28	0.06	0.17	0.19	0.11	
Queue Length 95th (m)	8.3	1.6	0.0	0.0	0.0	
Control Delay (s)	17.4	3.2	0.0	0.0	0.0	
Lane LOS	С	А				
Approach Delay (s)	17.4	1.4		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			2.3			
Intersection Canacity Utilization	n		44.6%	IC	CULevelo	of Service
Analysis Period (min)			15			

	-	-			
Lane Group	EBT	WBT	Ø2	Ø5	
Lane Configurations	**	**			
Traffic Volume (vph)	4823	2944			
Future Volume (vph)	4823	2944			
Lane Group Flow (vph)	5359	3271			
Turn Type	NA	NA			
Protected Phases	4	8	2	5	
Permitted Phases		-		-	
Detector Phase	4	8			
Switch Phase					
Minimum Initial (s)	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	
Total Split (s)	128.0	128.0	22.0	22.0	
Total Split (%)	85.3%	85.3%	15%	15%	
Yellow Time (s)	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0			
Total Lost Time (s)	4.0	4.0			
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	Max	Max	
Act Effct Green (s)	124.0	124.0			
Actuated g/C Ratio	0.83	0.83			
v/c Ratio	2 13	1 30			
Control Delay	529.2	157.3			
Queue Delav	0.0	0.0			
Total Delay	529.2	157.3			
LOS	F	F			
Approach Delay	529.2	157.3			
Approach LOS	F	F			
Queue Lenath 50th (m)	~1314.1	~645.3			
Queue Length 95th (m)	#1312.4	#673.5			
Internal Link Dist (m)	116.5	194.0			
Turn Bay Length (m)					
Base Capacity (vph)	2512	2512			
Starvation Can Reductn	0	0			
Spillback Cap Reductn	0	0 0			
Storage Cap Reductn	0	0			
Reduced v/c Ratio	2.13	1.30			
Intersection Summary					
Cycle Length: 150					
Actuated Cycle Length: 150)				
Natural Cycle: 150					
Control Type: Actuated-Und	coordinated	1			
Maximum v/c Ratio: 2.13					
Intersection Signal Delay: 3	88.2			In	tersection LOS: F
Intersection Canacity Utiliza	ation 156 9	%			U Level of Service H
Analysis Period (min) 15		/•			
 Volume exceeds capac 	itv. queue i	s theoretic	ally infinit	e.	

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

¶ø2	▶ ₽Ø4	
22 s	128 s	
▲ Ø5	₩ Ø8	
22 s	128 s	

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	**	1	5	44	5	1
Traffic Volume (vph)	2009	65	70	4011	166	49
Future Volume (vph)	2009	65	70	4011	166	49
Lane Group Flow (vph)	2115	68	74	4222	175	52
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
Lead/Lag	Lag	Laq	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	1.0	1.0	2.1	2.1	1.0	1.0
Actuated g/C Ratio	0.07	0.07	0.14	0.14	0.07	0.07
v/c Ratio	9.12	0.41	0.30	9.04	1.51	0.34
Control Delay	3659.9	14.7	8.3	3630.4	288.5	12.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3659.9	14.7	8.3	3630.4	288.5	12.7
LOS	F	В	A	F	F	В
Approach Delay	3546.4			3568.0	225.3	
Approach LOS	F			F	F	
Queue Length 50th (m)	~41.2	0.0	1.0	~84.8	~4.4	0.0
Queue Length 95th (m)	#90.1	#5.2	2.8	#147.6	#21.0	#4.4
Internal Link Dist (m)	194.0			273.3	94.8	
Turn Bay Length (m)		80.0	125.0			
Base Capacity (vph)	232	167	245	1908	116	152
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	9 12	0 4 1	0.30	2 21	1 51	0.34
Interportion Commercia	3112		5.00			0.01
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Length: 14.8	5					
Natural Cycle: 150	a a selle se se					
Control Type: Actuated-Unc	oordinated					
Maximum V/c Ratio: 9.12	447.0				· · · · ·	
Intersection Signal Delay: 34	447.8	\/		Ir	ntersectio	n LOS: F
Intersection Capacity Utiliza	tion 136.29	/o](JU Level	of Service
Analysis Period (min) 15						
 Volume exceeds capaci 	ty, queue i	s theoreti	cally infin	iite.		

AM.syn

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2055 Background Conditions - AM 2: Carmen Bergeron & Richelieu

	٦	-	4	+	Ť	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Configurations	5	ĥ	5	î,	đ b		र्स	1	
Traffic Volume (vph)	23	23	22	52	30	70	41	23	
Future Volume (vph)	23	23	22	52	30	70	41	23	
Lane Group Flow (vph)	24	26	23	226	48	0	117	24	
Turn Type	Perm	NA	Perm	NA	NA	Perm	NA	Perm	
Protected Phases		4		8	2		6		
Permitted Phases	4		8			6		6	
Detector Phase	4	4	8	8	2	6	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.0	10.0	10.0	10.0	13.9		13.9	13.9	
Actuated g/C Ratio	0.35	0.35	0.35	0.35	0.49		0.49	0.49	
v/c Ratio	0.06	0.04	0.05	0.34	0.03		0.16	0.03	
Control Delay	6.4	5.9	6.3	3.9	4.7		7.1	3.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	6.4	5.9	6.3	3.9	4.7		7.1	3.3	
LOS	А	А	А	А	А		А	А	
Approach Delay		6.1		4.1	4.7		6.4		
Approach LOS		А		А	А		А		
Queue Length 50th (m)	0.6	0.6	0.6	1.4	0.4		3.2	0.0	
Queue Length 95th (m)	2.5	2.5	2.4	7.2	1.6		7.8	1.7	
Internal Link Dist (m)		33.9		74.5	69.2		94.8		
Turn Bay Length (m)			25.0						
Base Capacity (vph)	690	1106	827	1055	2355		1079	1113	
Starvation Cap Reductn	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.03	0.02	0.03	0.21	0.02		0.11	0.02	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 28.	4								
Natural Cycle: 45									
Control Type: Actuated-Und	coordinated	1							
Maximum v/c Ratio: 0.34									
Intersection Signal Delay: 5	5.0			li	ntersectio	n LOS: A			
Intersection Capacity Utiliza	ation 40.1%)		l	CU Level	of Service	еA		
Analysis Daried (min) 45						01 001 1100	•••		

Analysis Period (min) 15

AM.syn

Splits and Phases:	2: Carmen Bergeron & Richelieu		
↑ ø2		<u></u> 04	
23 s		22 s	
Ø6		₩ Ø8	
23 s		22 s	

2055 Background Conditions - AM 3: Poupart & Richelieu

	۶	-	4	-	1	1	1	ŧ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	5	ţ,		4		đ þ		4
Traffic Volume (vph)	47	11	14	38	216	111	15	58
Future Volume (vph)	47	11	14	38	216	111	15	58
Lane Group Flow (vph)	49	89	0	74	0	349	0	130
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	Min	Min	Min	Min
Act Effct Green (s)	10.0	10.0		10.0		17.8		17.8
Actuated g/C Ratio	0.35	0.35		0.35		0.62		0.62
v/c Ratio	0.11	0.15		0.13		0.23		0.13
Control Delay	7.2	3.4		5.9		5.8		4.4
Queue Delay	0.0	0.0		0.0		0.0		0.0
Total Delay	7.2	3.4		5.9		5.8		4.4
LOS	Α	Α		Α		A		Α
Approach Delay		4.7		5.9		5.8		4.4
Approach LOS		A		A		A		A
Queue Length 50th (m)	1.3	0.3		1.4		5.2		2.0
Queue Length 95th (m)	4.5	4.2		5.3		9.8		6.5
Internal Link Dist (m)		59.9		24.8		77.8		42.7
Turn Bay Length (m)	20.0	_						
Base Capacity (vph)	785	991		987		1963		1277
Starvation Cap Reductn	0	0		0		0		0
Spillback Cap Reductn	0	0		0		0		0
Storage Cap Reductn	0	0		0		0		0
Reduced v/c Ratio	0.06	0.09		0.07		0.18		0.10
Intersection Summary								
Cycle Length: 45								
Actuated Cycle Length: 28.7								
Natural Cycle: 45								
Control Type: Actuated-Uncod	ordinated							
Maximum v/c Ratio: 0.23								
Intersection Signal Delay: 5.3				Ir	ntersectio	n LOS: A		
Intersection Capacity Utilization	on 36.7%)		10	CU Level	of Service	A	
Analysis Period (min) 15								

AM.syn

Splits and Phases:	3: Poupart & Richelieu		
≜		<u>≁</u> 04	
23 s		22 s	
Ø6		↓ Ø8	
23 s		22 s	

4: Poupart & Walm	art Drive	eway		AM.
	٦	1	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	4 †	A1⊅	
Traffic Volume (vph)	3	329	119	
Future Volume (vph)	3	329	119	
Lane Group Flow (vph)	25	377	152	
Sign Control	Stop	Free	Free	
Intersection Summary				
Control Type: Unsignalized				

Intersection Capacity Utilization 28.2% Analysis Period (min) 15

	٦	\mathbf{i}	1	†	↓	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			412	A 1.	•=
Traffic Volume (veh/h)	3	21	29	329	119	26
Future Volume (Veh/h)	3	21	29	329	119	26
Sign Control	Stop		•	Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (yph)	3	22	31	346	125	27
Pedestrians	Ŭ		01	010	120	-1
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110	110110	
Unstream signal (m)					102	
pX platoon unblocked					102	
vC conflicting volume	374	76	152			
vC1_stage 1 conf vol	0/1	10	102			
vC2_stage 2 conf vol						
vCu_unblocked vol	374	76	152			
tC, single (s)	6.8	6.9	4 1			
tC 2 stage (s)	0.0	0.0				
tE (s)	35	33	22			
n0 queue free %	99	98	98			
cM capacity (veh/h)	587	970	1426			
		010	1120			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	25	146	231	83	69	
Volume Left	3	31	0	0	0	
Volume Right	22	0	0	0	27	
cSH	899	1426	1700	1700	1700	
Volume to Capacity	0.03	0.02	0.14	0.05	0.04	
Queue Length 95th (m)	0.6	0.5	0.0	0.0	0.0	
Control Delay (s)	9.1	1.7	0.0	0.0	0.0	
Lane LOS	А	А				
Approach Delay (s)	9.1	0.7		0.0		
Approach LOS	А					
Intersection Summary						
Average Delav			0.9			
Intersection Capacity Utiliz	ation		28.2%	10	CU Level o	of Service
Analysis Period (min)	-		15			

		+	
Lane Group	FRT	WRT	Ø2
Lane Configurations			<u>U</u> L
	2121	T T (130.2	
Future Volume (vph)	2121	4302	
Lana Group Flow (vph)	2121	4302	
	2337	4700 NA	
Turri Type Drotoctod Dhasaa	NA 4	NA o	0
Protected Phases	4	0	2
Permilled Phases	٨	0	
Switch Dhace	4	0	
Switch Flidse	10.0	10.0	10.0
Minimum Colit (s)	10.0	10.0	10.0
iviiriiriurii Split (s) Tatal Split (a)	22.0	120.0	22.0
Total Split (S)	128.0	120.0	22.0
i otal Split (%)	85.3%	ბე. <u>კ</u> %	15%
reliow Time (s)	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	
Total Lost Time (s)	4.0	4.0	
Lead/Lag			
Lead-Lag Optimize?	••		
Recall Mode	None	None	Max
Act Effct Green (s)	124.0	124.0	
Actuated g/C Ratio	0.83	0.83	
v/c Ratio	0.94	1.90	
Control Delay	19.3	426.3	
Queue Delay	0.0	0.0	
Total Delay	19.3	426.3	
LOS	В	F	
Approach Delay	19.3	426.3	
Approach LOS	В	F	
Queue Length 50th (m)	230.9	~1128.6	
Queue Length 95th (m)	292.1	#1136.0	
Internal Link Dist (m)	116.5	194.0	
Turn Bay Length (m)			
Base Capacity (vph)	2512	2512	
Starvation Cap Reductn	0	0	
Spillback Cap Reductn	0	0	
Storage Cap Reductn	0	0	
Reduced v/c Ratio	0.94	1.90	
Interportion Cummers			
Intersection Summary			
Cycle Length: 150	_		
Actuated Cycle Length: 150	J		
Natural Cycle: 150			
Control Type: Actuated-Und	coordinated	k k	
Maximum v/c Ratio: 1.90			
Intersection Signal Delay: 2	291.9		
Intersection Capacity Utiliza	ation 140.3	%	
Analysis Period (min) 15			
 Volume exceeds capac 	ity queue i	s theoretic	ally infinite

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

√iø2		
22 s	128 s	
	₩ Ø8	
	128 s	

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	3	44	5	1
Traffic Volume (vph)	4861	305	162	3061	127	161
Future Volume (vph)	4861	305	162	3061	127	161
Lane Group Flow (vph)	5117	321	171	3222	134	169
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
Lead/Lag	Lag	Lao	Lead			•
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	1.0	1.0	4.8	4.8	1.0	1.0
Actuated g/C Ratio	0.06	0.06	0.27	0.27	0.06	0.06
v/c Ratio	25.97	0.98	0.56	3.58	1.35	0.68
Control Delay	11238 4	58.0	12.2	1175.6	240.2	22.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11238.4	58.0	12.2	1175.6	240.2	22.6
105	F	50.0 F	R	F	F	C.
Approach Delay	10578.5	L	5	1117 0	118.8	v
Approach LOS	F			F	F	
Queue Length 50th (m)	~183.8	~2 2	26	~93.2	~65	0.0
Queue Length 95th (m)	#201.8	#18.2	5.7	#110.6	#16 Q	#9 5
Internal Link Dist (m)	194.0	// TO.Z	5.1	273.3	9 <u>4</u> 8	#5.5
Turn Bay Length (m)	104.0	80.0	125.0	210.0	54.0	
Base Capacity (vph)	107	328	304	1621	QQ	247
Starvation Can Reducto	0	0_20	0	۲ <u>۲</u> ۲	0	0
Snillback Can Reductn	0	0	0	0	0	0
Storage Can Reductin	0	0	0	0	0	0
Reduced v/c Ratio	25.07	80 0	0 56	1 00	1 35	0 83 0
	25.97	0.90	0.50	1.99	1.55	0.00
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Length: 17.	7					
Natural Cycle: 150						
Control Type: Actuated-Und	coordinated					
Maximum v/c Ratio: 25.97						
Intersection Signal Delay: 6	6716.8			Ir	ntersectio	n LOS: F
Intersection Capacity Utilization	ation 161.99	%		10	CU Level	of Service
Analysis Period (min) 15						
~ Volume exceeds capac	ity, queue is	s theoreti	cally infin	iite.		

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2055 Background Conditions - PM 2: Carmen Bergeron & Richelieu

	۶	-	1	+	1	Ť	1	Ļ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	5	1.	5	1 4		ፈቤ		្ព	1	
Traffic Volume (vph)	14	62	27	54	2	72	288	144	35	
Future Volume (vph)	14	62	27	54	2	72	288	144	35	
Lane Group Flow (vph)	15	67	28	270	0	126	0	455	37	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8		2		6	-	6	
Detector Phase	4	4	8	8	2	2	6	6	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Min	Min	Min	Min	Min	
Act Effct Green (s)	10.5	10.5	10.5	10.5		21.1		21.1	21.1	
Actuated g/C Ratio	0.30	0.30	0.30	0.30		0.60		0.60	0.60	
v/c Ratio	0.05	0.13	0.08	0.44		0.07		0.60	0.04	
Control Delay	10.4	10.5	10.5	6.1		3.6		13.0	2.5	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	10.4	10.5	10.5	6.1		3.6		13.0	2.5	
LOS	В	В	В	А		А		В	А	
Approach Delay		10.5		6.5		3.6		12.2		
Approach LOS		В		А		А		В		
Queue Length 50th (m)	0.7	3.0	1.3	2.6		1.0		17.8	0.0	
Queue Length 95th (m)	3.2	8.5	4.8	13.7		3.6		#58.3	2.5	
Internal Link Dist (m)		33.9		74.5		69.2		94.8		
Turn Bay Length (m)			25.0							
Base Capacity (vph)	475	907	648	905		1862		779	934	
Starvation Cap Reductn	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	
Reduced v/c Ratio	0.03	0.07	0.04	0.30		0.07		0.58	0.04	
Intersection Summary										
Cycle Length: 45										
Actuated Cycle Length: 35.3										
Natural Cycle: 55										
Control Type: Actuated-Uncoo	rdinated									
Maximum v/c Ratio: 0.60										
Intersection Signal Delay: 9.3				Ir	ntersectio	n LOS: A				
Intersection Capacity Utilizatio	n 54.3%)		10	CU Level	of Service	Α			
Analysis Period (min) 15										

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Carmen Bergeron & Richelieu

2055 Background Conditions - PM 3: Poupart & Richelieu

	۶	-	4	-	1	1	1	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	î.		4		ፈቴ		4	
Traffic Volume (vph)	128	69	30	44	180	194	41	159	
Future Volume (vph)	128	69	30	44	180	194	41	159	
Lane Group Flow (vph)	135	385	0	97	0	428	0	381	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	11.2	11.2		11.2		12.3		12.3	
Actuated g/C Ratio	0.35	0.35		0.35		0.39		0.39	
v/c Ratio	0.31	0.52		0.19		0.46		0.58	
Control Delay	10.6	5.3		7.8		8.7		9.4	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	10.6	5.3		7.8		8.7		9.4	
LOS	В	Α		Α		Α		A	
Approach Delay		6.7		7.8		8.7		9.4	
Approach LOS		A		A		A		A	
Queue Length 50th (m)	3.9	2.0		2.1		6.3		8.2	
Queue Length 95th (m)	15.8	16.4		10.4		17.2		28.4	
Internal Link Dist (m)	00.0	59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0	4000		007		4450		070	
Base Capacity (vph)	/13	1032		835		1456		979	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.19	0.37		0.12		0.29		0.39	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 31.7									
Natural Cycle: 45									
Control Type: Actuated-Uncoc	ordinated								
Maximum v/c Ratio: 0.58									
Intersection Signal Delay: 8.1				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilizatio	on 76.4%			10	CU Level	of Service	e D		
Analysis Period (min) 15									

Splits and Phases:	3: Poupart & Richelieu		
1 ø2		 Ø4	
23 s		22 s	
Ø6		₩ Ø8	
23 s		22 s	

4: Poupart & Walma	art Drive	eway		PM.sy
	۶	1	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	-4 ↑	∱ĵ ≽	
Traffic Volume (vph)	54	407	467	
Future Volume (vph)	54	407	467	
Lane Group Flow (vph)	111	496	511	
Sign Control	Stop	Free	Free	
Intersection Summary				
Control Type: Unsignalized				

Intersection Capacity Utilization 44.6% Analysis Period (min) 15

	≯	\rightarrow	1	Ť	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			≜ 12		•=
Traffic Volume (veh/h)	54	51	65	407	467	18
Future Volume (Veh/h)	54	51	65	407	467	18
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	57	54	68	428	492	19
Pedestrians	01	01	00	120	102	10
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONE	NONE	
Linstream signal (m)					102	
nX platoon unblocked					102	
vC conflicting volume	852	256	511			
vC1_stage 1 conf vol	052	200	511			
vC2 stage 2 confivel						
	852	256	511			
tC single (s)	6.8	60	/ 1			
C_{1} single (s)	0.0	0.9	4.1			
tE(s)	35	33	2.2			
n^{0} guous fros %	9.0	0.0	2.2			
cM capacity (yeb/b)	280	744	1050			
	200	/ 44	1050			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	111	211	285	328	183	
Volume Left	57	68	0	0	0	
Volume Right	54	0	0	0	19	
cSH	401	1050	1700	1700	1700	
Volume to Capacity	0.28	0.06	0.17	0.19	0.11	
Queue Length 95th (m)	8.3	1.6	0.0	0.0	0.0	
Control Delay (s)	17.4	3.2	0.0	0.0	0.0	
Lane LOS	С	А				
Approach Delay (s)	17.4	1.4		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			2.3			
Intersection Canacity Utilization	n		44.6%	IC	CULevelo	of Service
Analysis Period (min)			15			

	-	-				
Lane Group	EBT	WBT	Ø2	Ø5		
Lane Configurations	* *	^				
Traffic Volume (vph)	5410	3283				
Future Volume (vph)	5410	3283				
Lane Group Flow (vph)	6011	3648				
Turn Type	NA	NA				
Protected Phases	4	8	2	5		
Permitted Phases						
Detector Phase	4	8				
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0		
Minimum Split (s)	22.0	22.0	22.0	22.0		
Total Split (s)	128.0	128.0	22.0	22.0		
Total Split (%)	85.3%	85.3%	15%	15%		
Yellow Time (s)	3.5	3.5	3.5	3.5		
All-Red Time (s)	0.5	0.5	0.5	0.5		
Lost Time Adjust (s)	0.0	0.0				
Total Lost Time (s)	4.0	4.0				
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max		
Act Effct Green (s)	124.0	124.0				
Actuated g/C Ratio	0.83	0.83				
v/c Ratio	2.39	1.45				
Control Delay	644.9	224.8				
Queue Delay	0.0	0.0				
Total Delay	644.9	224.8				
LOS	F	F				
Approach Delay	644.9	224.8				
Approach LOS	F	F				
Queue Length 50th (m)	~1522.9	~766.1				
Queue Length 95th (m)	#1510.4	#789.7				
Internal Link Dist (m)	116.5	194.0				
Turn Bay Length (m)						
Base Capacity (vph)	2512	2512				
Starvation Cap Reductn	0	0				
Spillback Cap Reductn	0	0				
Storage Cap Reductn	0	0				
Reduced v/c Ratio	2.39	1.45				
Intersection Summary						
Cycle Length: 150						
Actuated Cycle Length: 15	0					
Natural Cycle: 150						
Control Type: Actuated-Un	coordinated	2				
Maximum v/c Ratio: 2.39						
Intersection Signal Delay:	486.2			In	tersection LOS: F	
Intersection Capacity Utiliz	ation 175.5	%		IC	U Level of Service H	
Analysis Period (min) 15						
 Volume exceeds capacity 	citv. queue i	is theoretic	ally infinit	e.		

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

¶ø2	▶ ₽Ø4	
22 s	128 s	
Ø 5	₩ Ø8	
22 s	128 s	
Appendix D

Roundabout Feasibility Screening Tool

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 1	
2	Intersection:	Street 1 / Street 2	
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control.	4-legged intersection Estimated intersection AADT of 29,000 Approximately 250 m south of CR-17	
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.	
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Two circulating lanes, two entry and exit lanes for all approaches	
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.	

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outc	ome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🗆	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗹	No 🗆
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with two circulating lanes, two entry and exit lanes for all approaches is sufficient for the projected trip generation of Land-Use Option 1.

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 1	
2	Intersection:	Street 1 / Street 3	
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection, then indicate type of control.	3-legged 'T' intersection Estimated intersection AADT of 11,500 Approximately 450 m south of CR-17	
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.	
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Two circulating lanes, two entry and exit lanes for all approaches.	
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.	

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outc	ome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🗆	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗹	No 🗆
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with two circulating lanes, two entry and exit lanes for all approaches is sufficient for the projected trip generation of Land-Use Option 1.

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 1
2	Intersection:	Street 4 / Street 3
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection, then indicate type of control.	3-legged 'T' intersection Estimated intersection AADT of 12,000 Approximately 300 m west of Poupart Road
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Double circulating lane with single lane entry and single lane exit on the North approach and two entry and exit lanes for the E/W approaches.
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outc	ome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🗆	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗹	No 🗆
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with double circulating lanes and single lane entry/exit on the North approach and two entry and exit lanes for the E/W approaches is sufficient for the projected trip generation of Land-Use Option 1.

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 1		
2	Intersection:	Street 4 / Street 3		
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection, then indicate type of control.	3-legged 'T' intersection Estimated intersection AADT of 11,500 Where Poupart turns from an E/W roadway to a N/S roadway		
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.		
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Double circulating lane with single lane entry and single lane exit on the North approach and two entry and exit lanes for the E/W approaches.		
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.		

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outcome	
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🛛	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗆	No 🗹
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with double circulating lanes and single lane entry/exit on the North approach and two entry and exit lanes for the E/W approaches is sufficient for the projected trip generation of Land-Use Option 1.

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 3
2	Intersection:	Street 1 / Street 3
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection, then indicate type of control.	3-legged 'T' intersection Estimated intersection AADT of 4,000 Approximately 450 m south of CR-17
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Two circulating lanes, two entry and exit lanes for all approaches.
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outc	ome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🗆	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗹	No 🗆
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with two circulating lanes, two entry and exit lanes for all approaches is sufficient for the projected trip generation of Land-Use Option 3.

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 3	
2	Intersection:	Street 1 / Street 2	
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control.	4-legged intersection Estimated intersection AADT of 7,000 Approximately 250 m south of CR-17	
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.	
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Two circulating lanes, two entry and exit lanes for all approaches	
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.	

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Contra-Indication Outcome	
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🗆	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗹	No 🗆
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with two circulating lanes, two entry and exit lanes for all approaches is sufficient for the projected trip generation of Land-Use Option 3.

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 3
2	Intersection:	Street 4 / Street 3
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection, then indicate type of control.	3-legged 'T' intersection Estimated intersection AADT of 3,000 Approximately 300 m west of Poupart Road
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Double circulating lane with single lane entry and single lane exit on the North approach and two entry and exit lanes for the E/W approaches.
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outc	ome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🗆	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗹	No 🗆
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with double circulating lanes and single lane entry/exit on the North approach and two entry and exit lanes for the E/W approaches is sufficient for the projected trip generation of Land-Use Option 3.

1	Project Name:	Rockland Secondary Plan Land-Use Concept Option 3
2	Intersection:	Street 4 / Street 3
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection, then indicate type of control.	3-legged 'T' intersection Estimated intersection AADT of 2,500 Where Poupart turns from an E/W roadway to a N/S roadway
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Movement control for a new intersection.
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	Double circulating lane with single lane entry and single lane exit on the North approach and two entry and exit lanes for the E/W approaches.
6	Why is a roundabout being considered?	To remain consistent with other major intersections within Clarence-Rockland.

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outcome	
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗆	No 🗹
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗆	No 🗹
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗆	No 🗹
4	Is the intersection located within a coordinated signal system?	Yes 🛛	No 🗹
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗆	No 🔽
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗆	No 🗹
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗆	No 🗹

8 Are there suitability factors for a roundabout?

No.	Suitability Factor	Outc	ome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗆	No 🗹
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗆	No 🗹
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗹	No 🗆
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🔽	No 🗆
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗆	No 🗹
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗆	No 🗹
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗹	No 🗆

Based on the contra-indicators and suitability factors, a roundabout is feasible at this location. SIDRA analysis indicates a roundabout with double circulating lanes and single lane entry/exit on the North approach and two entry and exit lanes for the E/W approaches is sufficient for the projected trip generation of Land-Use Option 3.

Appendix E

Roundabout Traffic Flow Sheets

Appendix F

Roundabout Conceptual Designs

Appendix G

SIDRA Operational Analysis Results

Appendix H

Detailed Synchro Output Data for 2045

	-	\rightarrow	-	+	1	1			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	**	1	3	**	5	1			
Traffic Volume (vph)	1913	370	223	3799	504	186			
Future Volume (vph)	1913	370	223	3799	504	186			
Lane Group Flow (vph)	2014	389	235	3999	531	196			
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases		2	6			8			
Detector Phase	2	2	1	6	8	8			
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0			
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2			
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2			
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%			
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3			
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2			
Lead/Lag	Lag	l aq	Lead	5.2	5.2	0.2			
Lead-Lag Optimize?	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	None			
Act Effct Green (s)	1 0	1.0	6.4	6.4	1 0	1.0			
Actuated a/C Ratio	0.05	0.05	0.33	0.33	0.05	0.05			
v/c Ratio	11 19	0.87	0.65	3.58	5.00	0.00			
Control Delay	4612.1	27.6	13.6	1175.6	2243.5	24.9			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	4612.1	27.6	13.6	1175.6	2243.5	24.9			
	F	C	.0.0 R	F	22 70.0 F	C.			
Approach Delay	3870.0	U	J	1111 1	1645.3	U			
Approach LOS	F			F	F				
Oueue Length 50th (m)	~70 5	0.0	37	~121.6	~34.0	0.0			
Queue Length 95th (m)	#86.2	#15.0	<u>#</u> 7 ۶	#130 <i>I</i>	#52.8	#10 3			
Internal Link Dist (m)	10/ 0	<i>π</i> 1J.0	π1.0	772 2	01 Q	<i>π</i> 10.3			
Turn Bay Length (m)	134.0	80.0	125.0	210.0	54.0				
Rase Canacity (uph)	180	1/18	364	1/77	00	266			
Starvation Can Peducto	001	440	- J04 ∩	0	90	200			
Snillback Can Peducth	0	0	0	0	0	0			
Storage Can Peduoth	0	0	0	0	0	0			
Storage Cap Reductin	11 10	0 07	0 65	0 71	5.00	0 74			
Reduced v/c Ratio	11.19	0.07	0.05	2.71	5.90	0.74			
Intersection Summary									
Cycle Length: 20.6									
Actuated Cycle Length: 19.2	2								
Natural Cycle: 150									
Control Type: Actuated-Uncoordinated									
Maximum v/c Ratio: 11.19									
Intersection Signal Delay: 2	064.1			l	ntersectio	n LOS: F			
Intersection Capacity Utiliza	ition 149.89	%		l	CU Level	of Service			
Analysis Period (min) 15									
~ Volume exceeds capaci	ty, queue is	s theoreti	cally infin	ite.					

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2045 Total Conditions - Option 1 - AM 2: Carmen Bergeron & Richelieu

	٦	-	4	-	1	1	Ļ	~		
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR		
Lane Configurations	5	ţ,	5	1.	ፈቴ		4	1		
Traffic Volume (vph)	477	167	22	195	30	77	41	473		
Future Volume (vph)	477	167	22	195	30	77	41	473		
Lane Group Flow (vph)	502	178	23	398	48	0	124	498		
Turn Type	Perm	NA	Perm	NA	NA	Perm	NA	Perm		
Protected Phases		4		8	2		6			
Permitted Phases	4		8	-		6	-	6		
Detector Phase	4	4	8	8	2	6	6	6		
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0		
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0		
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Min	Min	Min	Min		
Act Effct Green (s)	18.1	18.1	18.1	18.1	11.4		11.4	11.4		
Actuated g/C Ratio	0.48	0.48	0.48	0.48	0.30		0.30	0.30		
v/c Ratio	1.22	0.21	0.04	0.47	0.05		0.29	0.62		
Control Delay	137.8	7.1	6.5	7.1	6.9		11.8	5.2		
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		
Total Delay	137.8	7.1	6.5	7.1	6.9		11.8	5.2		
LOS	F	А	А	А	А		В	А		
Approach Delay		103.6		7.0	6.9		6.5			
Approach LOS		F		А	А		А			
Queue Length 50th (m)	~38.5	4.9	0.6	8.2	0.7		5.7	0.0		
Queue Length 95th (m)	#94.2	16.7	3.7	30.1	2.7		13.5	12.6		
Internal Link Dist (m)		33.9		74.5	69.2		94.8			
Turn Bay Length (m)			25.0							
Base Capacity (vph)	412	850	549	854	1629		715	1007		
Starvation Cap Reductn	0	0	0	0	0		0	0		
Spillback Cap Reductn	0	0	0	0	0		0	0		
Storage Cap Reductn	0	0	0	0	0		0	0		
Reduced v/c Ratio	1.22	0.21	0.04	0.47	0.03		0.17	0.49		
Intersection Summarv										
Cycle Length: 45										
Actuated Cycle Length: 37.5	5									
Natural Cycle: 75	-									
Control Type: Actuated-Unc	coordinated	1								
Maximum v/c Ratio: 1.22										
Intersection Signal Delay: 4	rsection Signal Delay: 43.9 Intersection LOS: D									
Intersection Capacity Utiliza	tion 74.0%)		10	CU Level	of Service	e D			
Analysis Period (min) 15										
 Volume exceeds capaci 	ty, queue i	s theoreti	cally infin	ite.						

AM.syn

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Carmen Bergeron & Richelieu

2045 Total Conditions - Option 1 - AM 3: Poupart & Richelieu

	٦	-	4	-	1	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	î,		4		416		4	
Traffic Volume (vph)	176	11	14	38	242	229	15	218	
Future Volume (vph)	176	11	14	38	242	229	15	218	
Lane Group Flow (vph)	185	112	0	74	0	508	0	444	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?						• •		• 41	
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effect Green (s)	11.7	11.7		11.7		17.5		17.5	
Actuated g/C Ratio	0.35	0.35		0.35		0.53		0.53	
V/C Ratio	0.42	0.19		0.13		0.43		0.49	
Control Delay	12.4	3.9		1.2		8.7		8.2	
Queue Delay	12.4	0.0		0.0		0.0		0.0	
	IZ.4	3.9		1.Z		0.7		0.2	
LUS Approach Dolov	D	A 0.2		A 7.0		A 0 7		A 0.0	
Approach LOS		9.2		۲.۷		0. <i>1</i>		0.2	
Approach 2003	65	0.4		17		85		10.5	
Queue Length 95th (m)	21.3	6.0		1.7		0.0		35.8	
Internal Link Dist (m)	21.0	50.0		2/1.8		20.1 77.8		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> 20.7	
Turn Bay Length (m)	20.0	33.3		24.0		11.0		4 Ζ.1	
Base Canacity (vnh)	693	892		891		1464		1099	
Starvation Can Reductn	0	0		0		0		0	
Spillback Can Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.27	0.13		0.08		0.35		0.40	
Intersection Summary									
Cuele Length: 45									_
Actuated Cycle Longth: 22.2									
Actuated Cycle Length. 55.5									
Control Type: Actuated Upon	ordinated								
Maximum v/c Patio: 0.40	orumated	l							
Intersection Signal Dolay 94	3			١.	atoreactic				
Intersection Capacity Litilizati) ion 66 60/					of Service			
Analysis Period (min) 15	01.070			- N					

Splits and Phases:	3: Poupart & Richelieu		
↑ ø2		A 04	
23 s		22 s	
Ø6		↓ Ø8	
23 s		22 s	

	≯	Ť	Ŧ
Lane Group	EBL	NBT	SBT
Lane Configurations	Y	- ₹ †	≜ †₽
Traffic Volume (vph)	3	479	301
Future Volume (vph)	3	479	301
Lane Group Flow (vph)	25	535	344
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 37.9% Analysis Period (min) 15

ICU Level of Service A

AM.syn

	≯	\mathbf{r}	•	t	ŧ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4 †	đ₽	
Traffic Volume (veh/h)	3	21	29	479	301	26
Future Volume (Veh/h)	3	21	29	479	301	26
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	3	22	31	504	317	27
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					102	
pX, platoon unblocked						
vC, conflicting volume	644	172	344			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	644	172	344			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	97	97			
cM capacity (veh/h)	395	842	1212			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	25	199	336	211	133	
Volume Left	3	31	0	0	0	
Volume Right	22	0	0	0	27	
cSH	741	1212	1700	1700	1700	
Volume to Capacity	0.03	0.03	0.20	0.12	0.08	
Queue Length 95th (m)	0.8	0.6	0.0	0.0	0.0	
Control Delay (s)	10.0	1.4	0.0	0.0	0.0	
Lane LOS	В	А				
Approach Delay (s)	10.0	0.5		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.6			
Intersection Canacity Litilization	n		37.9%	IC		of Service
Analysis Period (min)			15	ic.		

	-	\rightarrow	-	-	1	1			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	44	1	3	**	5	1			
Traffic Volume (vph)	2196	2093	146	4234	2717	116			
Future Volume (vph)	2196	2093	146	4234	2717	116			
Lane Group Flow (vph)	2440	2326	162	4704	3019	129			
Turn Type	NA	Perm	Perm	NA	Prot	Perm			
Protected Phases	4			8	2				
Permitted Phases		4	8			2			
Detector Phase	4	4	8	8	2	2			
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0			
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0			
Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0			
Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%			
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5			
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max			
Act Effct Green (s)	124.0	124.0	124.0	124.0	18.0	18.0			
Actuated g/C Ratio	0.83	0.83	0.83	0.83	0.12	0.12			
v/c Ratio	0.97	1.77	3.77	1.87	16.59	0.74			
Control Delay	24.6	366.4	1312.5	412.8	7028.7	82.0			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	24.6	366.4	1312.5	412.8	7028 7	82.0			
LOS	2 1.0 C	555.T	F	F	F	52.5 F			
Approach Delay	191.4			442 8	6744 0				
Approach LOS	-101.4 F			F	F				
Queue Length 50th (m)	272.2	~965 5	~73.0	~1104 3	~1781 7	33 5			
Queue Length 95th (m)	#415.6	#1038.3	#120.5	#1112 Q	#1840 7	#64 6			
Internal Link Dist (m)	116.5	,, 1000.0	1120.0	194.0	73.0	104.0			
Turn Bay Length (m)	110.0	25.0	25.0	134.0	70.0				
Base Canacity (vnh)	2512	1312	20.0	2512	182	174			
Starvation Can Reducto	201Z	0		2012	0	0			
Snillback Can Reductin	0	0	0	0	0	0			
Storage Can Reductin	0	0	0	0	0	0			
Peduced v/c Patio	0.07	1 77	3 77	1 87	16 50	0 74			
	0.51	1.77	5.11	1.07	10.55	0.74			
Intersection Summary									
Cycle Length: 150									
Actuated Cycle Length: 150									
Natural Cycle: 140									
Control Type: Actuated-Unco	oordinated	d							
Maximum v/c Ratio: 16.59									
Intersection Signal Delay: 19	901.2				ntersectio	n LOS: F			
Intersection Capacity Utilizat	tion 314.8	%			CU Level	of Service			
Analysis Period (min) 15									
~ Volume exceeds capacit	y, queue	is theoreti	cally infir	nite.					

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

ÿ2	- ₩ Ø4	
22 s	128 s	
	₩Ø8	
	128 s	

	→	\rightarrow	-	-	1	1			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	44	1	ሻ	**	5	1			
Traffic Volume (vph)	4491	626	297	2876	415	297			
Future Volume (vph)	4491	626	297	2876	415	297			
Lane Group Flow (vph)	4727	659	313	3027	437	313			
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases		2	6			8			
Detector Phase	2	2	1	6	8	8			
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0			
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2			
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2			
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%			
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3			
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.0	6.2	6.2	6.2	5.2	5.0			
Lead/Lag	l an	an	l ead	0.2	0.2	0.2			
Lead-Lag Ontimize?	Vac	Yee	Yee						
Recall Mode	None	None	None	None	None	None			
Act Effet Green (s)	10	1.0	8.2	8.2	10	1 0			
Actuated a/C Patio	0.05	0.05	0.2	0.2	0.05	0.05			
v/c Patio	20.00	1.00	0.40	0.40	0.03 5.40	0.05			
Control Delay	12604.0	1.00	10.0	2.21 580 F	2014.1	0.00 20 G			
	12094.0	00.3	19.9	009.0	2014.1	20.0			
	12604.0	0.0	10.0	U.U	0.0	0.0			
	12094.0	00.3	19.9	569.5 F	2014.1	20.0			
LUS Annrageh Delau	T	E	В	F		U			
Approach Delay	11149.2			536.1	1185.5				
Approach LOS	H AAAAA	1.0	F 0	F	F				
Queue Length 50th (m)	~169.6	~4.8	5.2	~86.1	~27.5	0.0			
Queue Length 95th (m)	#187.6	#25.8	#13.8	#103.3	#44.8	#13.3			
Internal Link Dist (m)	194.0			273.3	94.8				
Turn Bay Length (m)		80.0	125.0						
Base Capacity (vph)	162	613	424	1334	81	370			
Starvation Cap Reductn	0	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0	0			
Reduced v/c Ratio	29.18	1.08	0.74	2.27	5.40	0.85			
Intersection Summary									
Cycle Length: 20.6									
Actuated Cycle Length: 20	0.6								
Natural Cycle: 150									
Control Type: Actuated-Uncoordinated									
Maximum v/c Ratio: 29.18									
Intersection Signal Delay	6619.8			li	ntersectio	n LOS: F			
Intersection Capacity Utili	zation 187.3°	%			CU Level	of Service			
Analysis Period (min) 15		-			2 0 2010	2. 23. 100			
 Volume exceeds capa 	city, queue is	s theoreti	cally infin	ite.					

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2045 Total Conditions - Option 1 - PM 2: Carmen Bergeron & Richelieu

	٦	-	4	-	1	1	1	Ŧ	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	5	1.	5	1 .		ፈቴ	-	្ឋ	1	
Traffic Volume (vph)	423	191	27	192	2	72	307	144	472	
Future Volume (vph)	423	191	27	192	2	72	307	144	472	
Lane Group Flow (vph)	445	203	28	429	0	126	0	475	497	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8		2		6		6	
Detector Phase	4	4	8	8	2	2	6	6	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Min	Min	Min	Min	Min	
Act Effct Green (s)	18.0	18.0	18.0	18.0		18.3		18.3	18.3	
Actuated g/C Ratio	0.41	0.41	0.41	0.41		0.41		0.41	0.41	
v/c Ratio	1.58	0.28	0.06	0.57		0.10		0.91	0.55	
Control Delay	299.9	10.4	8.9	10.3		5.7		39.6	3.8	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	299.9	10.4	8.9	10.3		5.7		39.6	3.8	
LOS	F	В	А	В		А		D	А	
Approach Delay		209.2		10.2		5.7		21.3		
Approach LOS		F		В		А		С		
Queue Length 50th (m)	~52.4	10.0	1.3	14.8		1.7		31.7	0.0	
Queue Length 95th (m)	#92.7	20.6	4.5	34.6		5.0		#76.8	12.3	
Internal Link Dist (m)		33.9		74.5		69.2		94.8		
Turn Bay Length (m)			25.0							
Base Capacity (vph)	281	717	452	750		1317		542	927	
Starvation Cap Reductn	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	
Reduced v/c Ratio	1.58	0.28	0.06	0.57		0.10		0.88	0.54	
Intersection Summary										
Cycle Length: 45										
Actuated Cycle Length: 44.3	}									
Natural Cycle: 100										
Control Type: Actuated-Unco	oordinated									
Maximum v/c Ratio: 1.58										
Intersection Signal Delay: 73	Delay: 73.4 Intersection LOS: E									
Intersection Capacity Utilizat	tion 92.0%			10	CU Level	of Service	϶F			
Analysis Period (min) 15										
~ Volume exceeds capacit	ty, queue i	s theoreti	cally infin	ite.						

PM.syn

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Carmen Bergeron & Richelieu

2045 Total Conditions - Option 1 - PM 3: Poupart & Richelieu

	٦	-	1	+	•	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	1 .		ሔ		ፈቤ		4	
Traffic Volume (vph)	250	69	30	44	207	329	41	284	
Future Volume (vph)	250	69	30	44	207	329	41	284	
Lane Group Flow (vph)	263	413	0	97	0	603	0	645	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	14.0	14.0		14.0		17.5		17.5	
Actuated g/C Ratio	0.35	0.35		0.35		0.44		0.44	
v/c Ratio	0.61	0.54		0.19		0.67		0.86	
Control Delay	17.7	5.4		8.6		14.1		24.5	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	17.7	5.4		8.6		14.1		24.5	
LOS	В	А		А		В		С	
Approach Delay		10.2		8.6		14.1		24.5	
Approach LOS		В		A		В		C	
Queue Length 50th (m)	14.7	3.4		3.6		15.0		28.2	
Queue Length 95th (m)	31.3	16.4		10.2		#33.3		#89.8	
Internal Link Dist (m)		59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0								
Base Capacity (vph)	567	899		668		993		820	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.46	0.46		0.15		0.61		0.79	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 39.	7								
Natural Cycle: 60									
Control Type: Actuated-Unc	coordinated								
Maximum v/c Ratio: 0.86									
Intersection Signal Delay: 1	5.9			li	ntersectio	n LOS: B			
Intersection Capacity Utiliza	ation 96.3%)		10	CU Level	of Service	ə F		
Analysis Period (min) 15									
# 95th percentile volume (exceeds ca	nacity o	ieue mav	he longe	r				

PM.syn

Splits and Phases: 3: Poupart & Richelieu

	≯	t	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	¥	-{1 †	A1⊅
Traffic Volume (vph)	54	574	618
Future Volume (vph)	54	574	618
Lane Group Flow (vph)	111	672	670
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 53.8% Analysis Period (min) 15

ICU Level of Service A

PM.syn

	≯	$\mathbf{\hat{z}}$	•	t	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			- € †	≜ †⊅	
Traffic Volume (veh/h)	54	51	65	574	618	18
Future Volume (Veh/h)	54	51	65	574	618	18
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	57	54	68	604	651	19
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					102	
pX, platoon unblocked						
vC, conflicting volume	1098	335	670			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1098	335	670			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	70	92	93			
cM capacity (veh/h)	192	661	916			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	111	269	403	434	236	
Volume Left	57	68	0	0	0	
Volume Right	54	0	0	0	19	
cSH	293	916	1700	1700	1700	
Volume to Capacity	0.38	0.07	0.24	0.26	0.14	
Queue Length 95th (m)	12.8	1.8	0.0	0.0	0.0	
Control Delay (s)	24.6	2.9	0.0	0.0	0.0	
Lane LOS	С	А				
Approach Delay (s)	24.6	1.2		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			2.4			
Intersection Capacity Utilizatio	n		53.8%	IC	CU Level o	of Service
Analysis Period (min)			15			

	-	\rightarrow	-	-	- 1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	3	^	5	1
Traffic Volume (vph)	5144	2801	117	3232	2332	124
Future Volume (vph)	5144	2801	117	3232	2332	124
Lane Group Flow (vph)	5716	3112	130	3591	2591	138
Turn Type	NA	Perm	Perm	NA	pm+pt	Perm
Protected Phases	4			8	5	
Permitted Phases		4	8		2	2
Detector Phase	4	4	8	8	5	2
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0
Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	•			•		
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	Max	Max
Act Effct Green (s)	124.0	124.0	124.0	124.0	18.0	18.0
Actuated g/C Ratio	0.83	0.83	0.83	0.83	0.12	0.12
v/c Ratio	2 28	2 53	3 10	1 43	14 24	0.85
Control Delay	592.5	705.4	1016.9	214.6	5971.2	103.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	592.5	705.4	1016.9	214.6	5971.2	103.3
LOS	502.0 F	F	F	- 14.0 F	F	F
Approach Delay	632 3			242 6	5674 5	
Approach LOS	502.0 F			242.0 F	F	
Oueue Length 50th (m)	~1428.4	~1500.8	~54 3	~747 8	~1521.2	40.3
Queue Length 95th (m)	#1421 0	#1558.8	±07.0	#779 1	#1588.2	±78.1
Internal Link Diet (m)	116 5	#1550.0	π31.4	10/ 0	73.0	πι0.1
Turn Bay Length (m)	110.5	25.0	25.0	134.0	73.0	
Rase Canacity (uph)	2512	20.0	20.0	2512	180	163
Stanuation Can Podulate	2312	1231	42	2012	102	105
Stallback Can Reductin	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductin	0 0	252	2 10	1 / 2	14.24	0 95
	2.20	2.00	5.10	1.43	14.24	0.00
Intersection Summary						
Cycle Length: 150						
Actuated Cycle Length: 150)					
Natural Cycle: 150						
Control Type: Actuated-Und	coordinate	d				
Maximum v/c Ratio: 14.24						
Intersection Signal Delay: 1	438.0				Intersectio	n LOS: F
Intersection Capacity Utiliza	ation 319.2	2%			ICU Level	of Service
Analysis Period (min) 15						
~ Volume exceeds capaci	ity, queue	is theoreti	cally infin	ite.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

¶ø2	₩ 24	
22 s	128 s	
Ø 5	₩ Ø8	
22 s	128 s	

	-	\rightarrow	- 🗲	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	ሻ	**	ሻ	1
Traffic Volume (vph)	2125	370	223	4157	504	186
Future Volume (vph)	2125	370	223	4157	504	186
Lane Group Flow (vph)	2237	389	235	4376	531	196
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
l ead/l ag	Lan	Lag	Lead	0.2	0.2	0.2
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effet Green (s)	10	10	64	6.4	10	1 0
Actuated a/C Ratio	0.05	0.05	0.4	0.4	0.05	0.05
v/c Ratio	12 /12	0.03	0.55	3 02	5 00	0.05
Control Delay	5170 2	27 6	13.6	1326.6	22/2 5	24.0
	0.0	21.0	13.0	1320.0	2243.0	24.9
Total Delay	0.0 5170.2	0.0	12 6	1326.6	2242 5	24.0
	5170.5	21.0	13.0 D	1320.0 F	ZZ43.3 E	24.9
LUO Approach Dolou		U	В	10E0 7	1645 2	U
Approach Delay	4408.5			1259.7	1045.3	
Approach LUS	F	0.0	07			0.0
Queue Length 50th (m)	~/8./	0.0	3.7	~135.4	~34.0	0.0
Queue Length 95th (m)	#94./	#15.0	#1.8	#153.3	#52.8	#10.3
Internal Link Dist (m)	194.0	00.0	105.0	273.3	94.8	
Turn Bay Length (m)	/ • •	80.0	125.0			
Base Capacity (vph)	180	448	364	1477	90	266
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	12.43	0.87	0.65	2.96	5.90	0.74
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Length: 19.	2					
Natural Cycle: 150						
Control Type: Actuated-Und	coordinated					
Maximum v/c Ratio: 12.43						
Intersection Signal Delay: 2	2333.2			l	ntersectio	n LOS: F
Intersection Capacity Utiliza	ation 160.39	%		l	CU Level	of Service
Analysis Period (min) 15		-			2010	0.0011100
 Volume exceeds capac 	ity, queue i	s theoreti	callv infin	ite.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2055 Total Conditions - Option 1 - AM 2: Carmen Bergeron & Richelieu

	٦	-	4	-	1	1	Ŧ	~	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Configurations	5	ţ,	5	1.	ፈቴ	•	4	1	
Traffic Volume (vph)	477	167	22	195	30	77	41	473	
Future Volume (vph)	477	167	22	195	30	77	41	473	
Lane Group Flow (vph)	502	178	23	398	48	0	124	498	
Turn Type	Perm	NA	Perm	NA	NA	Perm	NA	Perm	
Protected Phases		4		8	2		6		
Permitted Phases	4		8	-		6		6	
Detector Phase	4	4	8	8	2	6	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	18.1	18.1	18.1	18.1	11.4		11.4	11.4	
Actuated g/C Ratio	0.48	0.48	0.48	0.48	0.30		0.30	0.30	
v/c Ratio	1.22	0.21	0.04	0.47	0.05		0.29	0.62	
Control Delay	137.8	7.1	6.5	7.1	6.9		11.8	5.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	137.8	7.1	6.5	7.1	6.9		11.8	5.2	
LOS	F	А	А	А	А		В	А	
Approach Delay		103.6		7.0	6.9		6.5		
Approach LOS		F		А	А		А		
Queue Length 50th (m)	~38.5	4.9	0.6	8.2	0.7		5.7	0.0	
Queue Length 95th (m)	#94.2	16.7	3.7	30.1	2.7		13.5	12.6	
Internal Link Dist (m)		33.9		74.5	69.2		94.8		
Turn Bay Length (m)			25.0						
Base Capacity (vph)	412	850	549	854	1629		715	1007	
Starvation Cap Reductn	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	
Reduced v/c Ratio	1.22	0.21	0.04	0.47	0.03		0.17	0.49	
Intersection Summarv									
Cycle Length: 45									
Actuated Cycle Length: 37.5	5								
Natural Cycle: 75	-								
Control Type: Actuated-Unc	coordinated	ł							
Maximum v/c Ratio: 1.22									
Intersection Signal Delay: 4	3.9			li	ntersectio	n LOS: D			
Intersection Capacity Utiliza	tion 74.0%)		10	CU Level	of Service	e D		
Analysis Period (min) 15									
 Volume exceeds capaci 	ty, queue i	s theoreti	cally infin	ite.					

AM.syn

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Carmen Bergeron & Richelieu

2055 Total Conditions - Option 1 - AM 3: Poupart & Richelieu

	٦	-	4	-	1	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	1.		4		ፈቴ	-	4	
Traffic Volume (vph)	176	11	14	38	242	229	15	218	
Future Volume (vph)	176	11	14	38	242	229	15	218	
Lane Group Flow (vph)	185	112	0	74	0	508	0	444	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	11.7	11.7		11.7		17.5		17.5	
Actuated g/C Ratio	0.35	0.35		0.35		0.53		0.53	
v/c Ratio	0.42	0.19		0.13		0.43		0.49	
Control Delay	12.4	3.9		7.2		8.7		8.2	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
I otal Delay	12.4	3.9		1.2		8.7		8.2	
LOS	В	A		A		A		A	
Approach Delay		9.2		1.2		8.7		8.2	
Approach LOS	0.5	A		A		A		A	
Queue Length 50th (m)	0.5	0.4		1.7		8.5		10.5	
Queue Length 95th (m)	21.3	6.9		8.0		23.1		35.8	
Turn David anoth (m)	00.0	59.9		24.8		8.11		42.7	
Turn Bay Length (m)	20.0	000		004		1464		1000	
Dase Capacity (Vpn)	093	092		091		1404		1099	
Starvation Cap Reductin	0	0		0		0		0	
Spillback Cap Reductin	0	0		0		0		0	
Storage Cap Reductin	0 07	0 12		0		0.25		0 40	
Reduced V/C Ratio	0.27	0.13		0.08		0.35		0.40	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 33.3									
Natural Cycle: 45									
Control Type: Actuated-Unco	ordinated								
Maximum v/c Ratio: 0.49									
Intersection Signal Delay: 8.6				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilization	on 66.6%			10	CU Level	of Service	эC		
Analysis Period (min) 15									

Splits and Phases:	3: Poupart & Richelieu		
↑ ø2		A 04	
23 s		22 s	
Ø6		↓ Ø8	
23 s		22 s	

	≯	Ť	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	Y	- ₹ †	A
Traffic Volume (vph)	3	479	301
Future Volume (vph)	3	479	301
Lane Group Flow (vph)	25	535	344
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 37.9% Analysis Period (min) 15

ICU Level of Service A

AM.syn
	≯	\rightarrow	•	1	Ŧ	<
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W.			4 12	4 1.	-
Traffic Volume (veh/h)	3	21	29	479	301	26
Future Volume (Veh/h)	3	21	29	479	301	26
Sian Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	3	22	31	504	317	27
Pedestrians	Ű		01	001	011	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				Tiono	Nono	
Upstream signal (m)					102	
pX_platoon_unblocked					102	
vC conflicting volume	644	172	344			
vC1, stage 1 conf vol	• • •	=	••••			
vC2, stage 2 conf vol						
vCu, unblocked vol	644	172	344			
tC. single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
n0 queue free %	99	97				
cM capacity (veh/h)	395	842	1212			
Direction Long #						
Direction, Lane #	EBI	NB 1	NB Z	5B 1	<u>5B Z</u>	
	25	199	336	211	133	
Volume Left	3	31	0	0	0	
	22	0	0	0	27	
CSH Malana la Oscarit	741	1212	1700	1700	1700	
	0.03	0.03	0.20	0.12	0.08	
Queue Length 95th (m)	0.8	0.6	0.0	0.0	0.0	
Control Delay (s)	10.0	1.4	0.0	0.0	0.0	
Lane LOS	B	A		0.0		
Approach Delay (s)	10.0	0.5		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ition		37.9%	IC	CU Level o	of Service
Analysis Period (min)			15			

	-	\rightarrow	-	+	1	1			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	44	1	ň	**	5	1			
Traffic Volume (vph)	2426	2093	146	4640	2717	116			
Future Volume (vph)	2426	2093	146	4640	2717	116			
Lane Group Flow (vph)	2696	2326	162	5156	3019	129			
Turn Type	NA	Perm	Perm	NA	Prot	Perm			
Protected Phases	4			8	2				
Permitted Phases		4	8			2			
Detector Phase	4	4	8	8	2	2			
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0			
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0			
Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0			
Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%			
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5			
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max			
Act Effct Green (s)	124.0	124.0	124.0	124.0	18.0	18.0			
Actuated g/C Ratio	0.83	0.83	0.83	0.83	0.12	0.12			
v/c Ratio	1.07	1.80	3.86	2.05	16.59	0.75			
Control Delay	56.4	377.8	1353.6	493.1	7028.7	83.0			
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0			
Total Delay	56.4	377.8	1353.6	493.1	7028.7	83.0			
LOS	F	F		F	F	F			
Approach Delay	205.3			519.3	6744 1	•			
Approach LOS	_30.0			F	F				
Queue Length 50th (m)	~461 1	~976 7	~74 0	~1249 1	~1781 7	33.8			
Queue Length 95th (m)	#495.4	#1049 5	#121 5	#1251 0	#1840 7	#65.2			
Internal Link Dist (m)	116 5	# 10 -1 0.0	" 12 1.J	194 0	73.0	1100.Z			
Turn Ray Length (m)	110.5	25.0	25.0	104.0	10.0				
Base Canacity (vnh)	2512	129/	20.0 42	2512	182	173			
Starvation Can Reducto	201Z	1204		2312	02	0			
Snillback Can Reduct	0	0	0	0	0	0			
Storage Can Peducth	0	0	0	0	0	0			
Reduced v/c Patio	1 07	1 80	385	2 05	16 50	0 75			
	1.07	1.00	3.00	2.05	10.59	0.75			
Intersection Summary									
Cycle Length: 150									
Actuated Cycle Length: 150									
Natural Cycle: 150									
Control Type: Actuated-Unco	oordinate	d							
Maximum v/c Ratio: 16.59									
Intersection Signal Delay: 18	355.2				Intersectio	n LOS: F			
Intersection Capacity Utilizat	tion 327.7	%			ICU Level	of Service			
Analysis Period (min) 15									
~ Volume exceeds capacit	y, queue	is theoreti	cally infir	nite.					

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

√ø₂	₩ Ø4	
22 s	128 s	
	₩ Ø8	
	128 s	

	-	\rightarrow	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	3	**	3	1
Traffic Volume (vph)	4985	626	297	3178	415	297
Future Volume (vph)	4985	626	297	3178	415	297
Lane Group Flow (vph)	5247	659	313	3345	437	313
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.0	5.2
Lead/Lag	Lag	Lag	Lead	0.2	0.2	0.2
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	1.0	1 0	8.2	8.2	1 0	1 0
Actuated g/C Ratio	0.05	0.05	0.40	0.40	0.05	0.05
v/c Ratio	32.39	1 18	0.10	2.51	5 40	0.85
Control Delay	14138.3	109.8	19.9	696.0	2014 1	28.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14138.3	109.8	19.9	696.0	2014 1	28.6
LOS	F	- 00.0 F	R	555.0 F	F	20.0 C
Approach Delay	12572 9		J	638 1	1185 5	U
Approach LOS	F			555.1 F	F	
Oueue Length 50th (m)	~188.6	~8.8	52	~97 7	~27 5	0.0
Queue Length 95th (m)	#206.5	#20.8	J.۲ #13.8	#115.2	±11.5	#13 3
Internal Link Diet (m)	π200.3 10/ Ω	π23.0	<i>#</i> 13.0	π113.Z	0/ Ω	<i>π</i> 13.3
Turn Bay Length (m)	134.0	80.0	125.0	213.3	54.0	
Rase Capacity (yph)	162	550	120.0	133/	Q1	370
Starvation Can Poducto	102	009	424	1554	01	570
Starvation Cap Reductin	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductin	20.20	1 1 0	0.74	0	5 40	0.95
Reduced V/C Ratio	32.39	1.10	0.74	2.51	5.40	0.00
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Length: 20.	.6					
Natural Cycle: 150						
Control Type: Actuated-Un	coordinated	1				
Maximum v/c Ratio: 32.39						
Intersection Signal Delay: 7	7512.0			l	ntersectio	n LOS: F
Intersection Capacity Utilization	ation 201.89	%		l	CU Level	of Service
Analysis Period (min) 15						
~ Volume exceeds capac	city, queue is	s theoreti	cally infin	ite.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2055 Total Conditions - Option 1 - PM 2: Carmen Bergeron & Richelieu

	٦	-	4	-	1	1	1	۰.	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	5	1.	5	1.		ፈቴ	-	្រា	1	
Traffic Volume (vph)	423	191	27	192	2	72	307	144	472	
Future Volume (vph)	423	191	27	192	2	72	307	144	472	
Lane Group Flow (vph)	445	203	28	429	0	126	0	475	497	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8		2		6		6	
Detector Phase	4	4	8	8	2	2	6	6	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Min	Min	Min	Min	Min	
Act Effct Green (s)	18.0	18.0	18.0	18.0		18.3		18.3	18.3	
Actuated g/C Ratio	0.41	0.41	0.41	0.41		0.41		0.41	0.41	
v/c Ratio	1.58	0.28	0.06	0.57		0.10		0.91	0.55	
Control Delay	299.9	10.4	8.9	10.3		5.7		39.6	3.8	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	299.9	10.4	8.9	10.3		5.7		39.6	3.8	
LOS	F	В	А	В		А		D	А	
Approach Delay		209.2		10.2		5.7		21.3		
Approach LOS		F		В		Α		С		
Queue Length 50th (m)	~52.4	10.0	1.3	14.8		1.7		31.7	0.0	
Queue Length 95th (m)	#92.7	20.6	4.5	34.6		5.0		#76.8	12.3	
Internal Link Dist (m)		33.9		74.5		69.2		94.8		
I urn Bay Length (m)			25.0							
Base Capacity (vph)	281	717	452	750		1317		542	927	
Starvation Cap Reductn	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	
Reduced v/c Ratio	1.58	0.28	0.06	0.57		0.10		0.88	0.54	
Intersection Summary										
Cycle Length: 45	0									
Actuated Cycle Length: 44.	3									
Control Type: Actuated-Unc	coordinated									
Intersection Circal Data 7	2.4					- 1 00: 5				
Intersection Signal Delay: /	3.4			Ir		n LUS: E				
Intersection Capacity Utiliza	alion 92.0%			10	JU Level	of Service	÷F			
Analysis Period (min) 15	ity anous	o theoret	مالير ام	ito						
 volume exceeds capaci 	ity, queue l	s meoreti	cally infin	ne.						

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Carmen Bergeron & Richelieu

2055 Total Conditions - Option 1 - PM 3: Poupart & Richelieu

	٦	-	4	+	1	1	1	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	1.		4		ፈቴ	-	4	
Traffic Volume (vph)	250	69	30	44	207	329	41	284	
Future Volume (vph)	250	69	30	44	207	329	41	284	
Lane Group Flow (vph)	263	413	0	97	0	603	0	645	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	14.0	14.0		14.0		17.5		17.5	
Actuated g/C Ratio	0.35	0.35		0.35		0.44		0.44	
v/c Ratio	0.61	0.54		0.19		0.67		0.86	
Control Delay	17.7	5.4		8.6		14.1		24.5	
Queue Delav	0.0	0.0		0.0		0.0		0.0	
Total Delay	17.7	5.4		8.6		14.1		24.5	
LOS	В	A		A		В		С	
Approach Delay		10.2		8.6		14.1		24.5	
Approach LOS		В		A		В		C	
Queue Length 50th (m)	14.7	3.4		3.6		15.0		28.2	
Queue Length 95th (m)	31.3	16.4		10.2		#33.3		#89.8	
Internal Link Dist (m)		59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0								
Base Capacity (vph)	567	899		668		993		820	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.46	0.46		0.15		0.61		0.79	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 39.	7								
Natural Cycle: 60									
Control Type: Actuated-Unc	coordinated	1							
Maximum v/c Ratio: 0.86									
Intersection Signal Delay: 1	5.9			li	ntersectio	n LOS: B			
Intersection Capacity Utiliza	ation 96.3%)			CU Level	of Service	e F		
Analysis Period (min) 15							-		
# 95th percentile volume (exceeds ca	nacity o	ieue mav	be longe	۶r				

Splits and Phases: 3: Poupart & Richelieu

	≯	†	Ŧ
Lane Group	EBL	NBT	SBT
Lane Configurations	Y	4†	≜ †⊅
Traffic Volume (vph)	54	574	618
Future Volume (vph)	54	574	618
Lane Group Flow (vph)	111	672	670
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 53.8% Analysis Period (min) 15

ICU Level of Service A

	۶	$\mathbf{\hat{z}}$	•	t	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	- Y			{t†	≜ †}		
Traffic Volume (veh/h)	54	51	65	574	618	18	
Future Volume (Veh/h)	54	51	65	574	618	18	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	57	54	68	604	651	19	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)					102		
pX, platoon unblocked							
vC, conflicting volume	1098	335	670				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1098	335	670				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	70	92	93				
cM capacity (veh/h)	192	661	916				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	111	269	403	434	236		1
Volume Left	57	68	0	0	0		
Volume Right	54	0	0	0	19		
cSH	293	916	1700	1700	1700		
Volume to Capacity	0.38	0.07	0.24	0.26	0.14		
Queue Length 95th (m)	12.8	1.8	0.0	0.0	0.0		
Control Delay (s)	24.6	2.9	0.0	0.0	0.0		
Lane LOS	С	А					
Approach Delay (s)	24.6	1.2		0.0			
Approach LOS	С						
Intersection Summary							
Average Delay			2.4				
Intersection Capacity Utilization	on		53.8%	IC	U Level o	of Service	
Analysis Period (min)			15				

	-	\rightarrow	-	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	1	3	^	5	1
Traffic Volume (vph)	5731	2801	117	3571	2332	124
Future Volume (vph)	5731	2801	117	3571	2332	124
Lane Group Flow (vph)	6368	3112	130	3968	2591	138
Turn Type	NA	Perm	Perm	NA	pm+pt	Perm
Protected Phases	4			8	5	
Permitted Phases		4	8		2	2
Detector Phase	4	4	8	8	5	2
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0
Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4 O	4 O	4.0	4 O	4.0	4.0
Lead/Lag	т.0	<u>-</u> т.0	- r .v	т.U	т. U	4.V
Lead-Lag Optimize?						
	None	None	None	None	Max	Max
Act Effet Green (s)	12/ 0	12/1 0	12/ 0	12/1 0	18.0	18.0
Actuated a/C Ratio	0.83	0.83	0.83	124.0 Ω 83	Ω 12	0.12
v/c Ratio	2.57	2 55	3 10	1 52	1/ 2/	0.12
Control Delay	2.04	2.00	1016.0	281.0	5071.2	102.2
	100.3	115.7	0.0	201.9	0.0	0.0
Total Delay	0.0 709 2	715.7	1016.0	281.0	5071.0	102.2
	700.3	/ 13.7 E	1010.9 E	201.9	5571.2	103.3 E
LOO Approach Dolou	710 7	٢	٢	205 C	Г 5674 F	Г
Approach LOS	- / IU./			305.Z	5074.5 F	
Approach LOS	- 1627 0	- 1507 7	- E 4 Q	- 969 F	-1501 0	10.2
Queue Length 50th (m)	~1037.2	~1507.7	~54.3	~000.5	~1521.2	40.3
Queue Length 95th (m)	#1018.6	#1305.7	#97.4	#00/./	#1000.2	#/ð.1
Internal Link Dist (m)	116.5	05.0	05.0	194.0	73.0	
Turn Bay Length (m)	0540	25.0	25.0	0540	400	400
Base Capacity (vph)	2512	1220	42	2512	182	163
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	2.54	2.55	3.10	1.58	14.24	0.85
Intersection Summary						
Cycle Lenath: 150						
Actuated Cycle Length: 15	0					
Natural Cycle: 150	-					
Control Type: Actuated-Lin	coordinate	d				
Maximum v/c Ratio: 14 24		~				
Intersection Signal Delay	1439 5				Intersectio	n I OS F
Intersection Canacity Litiliz	ation 337.0	2%				of Service
Analysis Period (min) 15		/0				
	nity quare	is theoreti	cally infin	ito		
volume exceeds capad	Jity, queue	is theoreti	cally IIIIn	inte.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

¶ø2	₩ 24	
22 s	128 s	
Ø 5	₩ Ø8	
22 s	128 s	

	-	\rightarrow	1	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	5	^	ሻ	1
Traffic Volume (vph)	1803	284	120	3685	270	78
Future Volume (vph)	1803	284	120	3685	270	78
Lane Group Flow (vph)	1898	299	126	3879	284	82
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	1.0	1.0	3.3	3.3	1.0	1.0
Actuated q/C Ratio	0.06	0.06	0.20	0.20	0.06	0.06
v/c Ratio	8.83	0.80	0.51	5.67	2.65	0.48
Control Delay	3541.8	23.9	12.6	2115.6	781.8	17.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3541.8	23.9	12.6	2115.6	781.8	17.4
LOS	F	С	B	F	F	В
Approach Delay	3063.0			2049.4	610.5	-
Approach LOS	F			F	F	
Queue Length 50th (m)	~36.7	0.0	~1.9	~77.7	~8.7	0.0
Queue Length 95th (m)	#81 7	#13.0	4.3	#135.0	#31.3	#6.0
Internal Link Dist (m)	194.0	,, 10.0		273.3	94.8	10.0
Turn Bay Length (m)	104.0	80.0	125.0	210.0	04.0	
Base Capacity (vph)	215	376	245	1764	107	172
Starvation Can Reductn	0	0/0	0	0	0	0
Snillback Can Reductn	0	0	0	0	0	0
Storage Can Reductn	0	0	0	0	0	0
Reduced v/c Ratio	8.83	0.80	0.51	2.20	2.65	0.48
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Longth: 16	3					
Natural Cycle: 150	J					
Control Type: Actuated Uni	coordinated					
Maximum v/a Datio: 9.92	coordinated	l 				
Intersection Signal Dolore	208.2			1.	atoreactia	
Intersection Signal Delay. 2	-000.0 ation 122.00	0/				of Service
Analysis Daried (min) 15	au011 132.01	/0		1	SO Level	
	ity quoue i	e theoreti	cally infin	iito		
 volume exceeds capac 	ny, queue l	s meoreti	cally infin	nte.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2045 Total Conditions - Option 3 - AM 2: Carmen Bergeron & Richelieu

	≯	-	4	+	Ť	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Configurations	5	Ť.	5	1.	ፈሴ		4	1	
Traffic Volume (vph)	149	58	22	110	30	72	41	207	
Future Volume (vph)	149	58	22	110	30	72	41	207	
Lane Group Flow (vph)	157	63	23	292	48	0	119	218	
Turn Type	Perm	NA	Perm	NA	NA	Perm	NA	Perm	
Protected Phases		4		8	2		6		
Permitted Phases	4		8			6		6	
Detector Phase	4	4	8	8	2	6	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?						• •		• 41	
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effet Green (s)	11.4	11.4	11.4	11.4	11./		11./	11./	
Actuated g/C Ratio	0.37	0.37	0.37	0.37	0.38		0.38	0.38	
V/c Ratio	0.42	0.10	0.05	0.42	0.04		0.22	0.31	
Control Delay	10.6	6.0	5.9	4.9	5.8		8.8	3.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	10.6	0.0	5.9	4.9	5.8		8.8	3.1	
LUS Approach Dolou	В	A	A	A F O	A E O		A	A	
Approach LOS		9.5		5.0	0.C		ے.C ۸		
Approach Loos	16	1 A	0.6	A 2 1	A 0.4		2 2 A	0.0	
Queue Length 30th (m)	4.0	T.0	0.0	11 /	0.4		5.5 11 5	0.0	
Internal Link Dist (m)	12.1	33.0	2.0	7/ 5	69.2		0/ 8	1.1	
Turn Bay Length (m)		00.9	25.0	14.5	03.2		34.0		
Base Canacity (vnh)	597	1025	737	1010	1967		885	1007	
Starvation Can Reductn	0	020	0	0	0		000	007	
Spillback Can Reductn	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.26	0.06	0.03	0.29	0.02		0.13	0.22	
Intersection Summary	0.20			0.20	0.01				
Cycle Length: 15									
Actuated Cycle Length: 31.2									
Natural Cycle: 45									
Control Type: Actuated I Incor	ordinated	1							
Maximum v/c Ratio: 0.42		•							
Intersection Signal Delay: 6.1				Ir	ntersectio	n I OS· A			
Intersection Canacity Utilizatio	on 48 8%			10		of Service	Α		
Analysis Period (min) 15						01 001 1100			

AM.syn

Splits and Phases:	2: Carmen Bergeron & Richelieu		
↑ ø₂		<u>≁</u> 04	
23 s		22 s	
Ø6		↓ Ø8	
23 s		22 s	

2045 Total Conditions - Option 3 - AM 3: Poupart & Richelieu

	۶	-	4	+	1	1	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	ĥ		4		đþ		4	Ξ
Traffic Volume (vph)	71	11	14	38	231	122	15	92	
Future Volume (vph)	71	11	14	38	231	122	15	92	
Lane Group Flow (vph)	75	103	0	74	0	376	0	217	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.1	10.1		10.1		17.4		17.4	
Actuated g/C Ratio	0.36	0.36		0.36		0.63		0.63	
v/c Ratio	0.17	0.17		0.13		0.26		0.21	
Control Delay	7.6	3.3		5.9		5.9		4.0	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	7.6	3.3		5.9		5.9		4.0	
LOS	A	A		A		A		A	
Approach Delay		5.1		5.9		5.9		4.0	
Approach LOS		A		A		A		A	
Queue Length 50th (m)	2.0	0.3		1.4		5.8		3.1	
Queue Length 95th (m)	6.6	4.7		5.6		10.7		9.2	
Internal Link Dist (m)	00.0	59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0	4000		1040		4070		4000	
Base Capacity (vph)	815	1028		1018		1870		1290	
Starvation Cap Reductin	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.09	0.10		0.07		0.20		0.17	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 27.8									
Natural Cycle: 45									
Control Type: Actuated-Uncod	ordinated								
Maximum v/c Ratio: 0.26									
Intersection Signal Delay: 5.3				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilization	on 46.7%			10	CU Level	of Service	eΑ		
Analysis Period (min) 15									

Splits and Phases:	3: Poupart & Richelieu		
↑ ø₂		A 04	
23 s		22 s	
Ø6		↓ Ø8	
23 s		22 s	

	≯	1	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	Y	-۠	≜ †₽
Traffic Volume (vph)	3	337	165
Future Volume (vph)	3	337	165
Lane Group Flow (vph)	25	394	201
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 30.0% Analysis Period (min) 15

ICU Level of Service A

AM.syn

	٦	$\mathbf{\hat{z}}$	•	t	ŧ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Υ.			4ħ	At≱	
Traffic Volume (veh/h)	3	21	37	337	165	26
Future Volume (Veh/h)	3	21	37	337	165	26
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	3	22	39	355	174	27
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					102	
pX, platoon unblocked						
vC, conflicting volume	443	100	201			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	443	100	201			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	98	97			
cM capacity (veh/h)	528	935	1368			
Direction Lane #	FR 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	25	157	237	116	85	
Volume Left	20 2	30	0	0	0	
Volume Right	22	0	0	0	27	
cSH	856	1368	1700	1700	1700	
Volume to Canacity	0.03	0.03	0 14	0.07	0.05	
Oueue Length 95th (m)	0.00	0.03	0.14	0.07	0.05	
Control Delay (s)	0.7	2.1	0.0	0.0	0.0	
	ο.0 Δ	Δ	0.0	0.0	0.0	
Annroach Delay (s)	03	0.8		0.0		
Approach LOS	Δ	0.0		0.0		
	Л					
Intersection Summary						
Average Delay			0.9			
Intersection Capacity Utiliza	ation		30.0%	IC	CU Level o	of Service
Analysis Period (min)			15			

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	5	44	5	1
Traffic Volume (vph)	2110	844	32	4000	1530	6
Future Volume (vph)	2110	844	32	4000	1530	6
Lane Group Flow (vph)	2344	938	36	4444	1700	7
Turn Type	NA	Perm	Perm	NA	Prot	Perm
Protected Phases	4			8	2	
Permitted Phases		4	8			2
Detector Phase	4	4	8	8	2	2
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0
Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	Max	Max
Act Effct Green (s)	124.0	124.0	124.0	124.0	18.0	18.0
Actuated g/C Ratio	0.83	0.83	0.83	0.83	0.12	0.12
v/c Ratio	0.93	0.78	0.65	1.77	9.34	0.04
Control Delay	18.7	8.1	61.5	366.6	3770.8	55.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.7	8.1	61.5	366.6	3770.8	55.3
LOS	В	А	E	F	F	Е
Approach Delay	15.6			364.2	3755.6	
Approach LOS	В			F	F	
Queue Length 50th (m)	225.5	46.7	3.2	~1021.0	~979.0	1.6
Queue Length 95th (m)	284.5	92.6	#12.8	#1033.5	#1057.5	6.4
Internal Link Dist (m)	116.5			194.0	73.0	
Turn Bay Length (m)		25.0	25.0			
Base Capacity (vph)	2512	1203	55	2512	182	164
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0 0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.93	0.78	0.65	1.77	9.34	0.04
Internetion Original						
Intersection Summary						
Cycle Length: 150						
Actuated Cycle Length: 150						
Natural Cycle: 150						
Control Type: Actuated-Unco	oordinated					
Maximum v/c Ratio: 9.34						
Intersection Signal Delay: 85	94.8			I	ntersectio	n LOS: F
Intersection Capacity Utilizat	tion 231.6°	%			CU Level	of Service
Analysis Period (min) 15						
 Volume exceeds capacit 	y, queue i	s theoreti	cally infir	nite.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

√iø2		
22 s	128 s	
	₩ Ø8	
	128 s	

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	**	1	5	**	5	1
Traffic Volume (vph)	4393	479	191	2768	242	205
Future Volume (vph)	4393	479	191	2768	242	205
Lane Group Flow (vph)	4624	504	201	2914	255	216
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		<u> </u>	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.5	1.6	1.0	1.0	19	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.0	5.2
	1.0	1 20	Lead	0.2	5.2	5.2
Lead-Lag Optimize?	Vae	Vac	Vac			
	None	None	None	None	None	None
Act Effet Green (c)	1.0	1 0			10	1 0
Actuated a/C Patia	0.05	0.05	0.4	0.4	0.05	0.05
v/c Patio	25 60	1.05	0.55	2.61	2 0.00	0.05
Control Dolay	20.09 11140 A	1.01 52.4	0.00	2.01 7/1/	2.0J	0.70
	11140.4	52.4	10.7	141.4	0/3.4	25.4
Queue Delay	0.0	0.0	10.7	744.4	0.0	0.0
	11140.4 F	5Z.4	10.7	741.4	0/3.4	25.4
LUS Annrageh Delevi		U	В	F		U
Approach Delay	10057.9			694.3	484.5	
Approach LOS	+	^ /	~ (H	H	• •
Queue Length 50th (m)	~165.8	~2.1	3.1	~82.0	~14.9	0.0
Queue Length 95th (m)	#183.8	#21.3	6.6	#99.0	#28.7	#10.9
Internal Link Dist (m)	194.0			273.3	94.8	
Turn Bay Length (m)		80.0	125.0			
Base Capacity (vph)	180	500	364	1477	90	285
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	25.69	1.01	0.55	1.97	2.83	0.76
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Length: 19	.2					
Natural Cycle: 150						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 25 69						
Intersection Signal Delay	6193.2			Ir	ntersectio	n LOS [.] F
Intersection Capacity Utiliz	ation 168 29	/		10	CULevel	of Service
Analysis Period (min) 15				- N		0.001100
	rity anene i	s theoreti	cally infin	ite.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2045 Total Conditions - Option 3 - PM 2: Carmen Bergeron & Richelieu

	٦	-	-	-	1	1	1	Ļ	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	5	ţ,	5	ĥ		ፈቴ		ង	1	
Traffic Volume (vph)	171	112	27	89	2	72	292	144	154	
Future Volume (vph)	171	112	27	89	2	72	292	144	154	
Lane Group Flow (vph)	180	120	28	310	0	126	0	459	162	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8		2		6		6	
Detector Phase	4	4	8	8	2	2	6	6	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Min	Min	Min	Min	Min	
Act Effct Green (s)	13.1	13.1	13.1	13.1		18.1		18.1	18.1	
Actuated g/C Ratio	0.33	0.33	0.33	0.33		0.46		0.46	0.46	
v/c Ratio	0.60	0.20	0.07	0.46		0.09		0.79	0.21	
Control Delay	20.3	10.1	9.2	6.0		5.1		24.1	2.7	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	20.3	10.1	9.2	6.0		5.1		24.1	2.7	
LOS	С	В	A	A		A		С	A	
Approach Delay		16.2		6.3		5.1		18.5		
Approach LOS		В		A		A		В		
Queue Length 50th (m)	9.8	5.6	1.3	4.4		1.3		22.0	0.0	
Queue Length 95th (m)	23.8	12.8	4.5	16.0		5.0		#73.4	7.1	
Internal Link Dist (m)		33.9	05.0	74.5		69.2		94.8		
Turn Bay Length (m)	440	045	25.0	0.47		4400			045	
Base Capacity (vph)	416	815	555	847		1493		620	815	
Starvation Cap Reductn	0	0	0	0		0		0	0	
Spillback Cap Reductin	0	0	0	0		0		0	0	
Storage Cap Reductin	0 42	0.45	0.05	0 27		0		0 74	0 20	
Reduced V/C Ratio	0.43	0.15	0.05	0.37		0.08		0.74	0.20	
Intersection Summary										
Cycle Length: 45										
Actuated Cycle Length: 39.3	3									
Natural Cycle: 55										
Control Type: Actuated-Unc	coordinated									
Maximum v/c Ratio: 0.79										
Intersection Signal Delay: 13	3.8			lr	ntersectio	n LOS: B				
Intersection Capacity Utiliza	tion 70.0%	1		10	CU Level	of Service	ЭC			
Analysis Period (min) 15										
# 95th percentile volume e	exceeds ca	pacity, qu	Leue may	be longe	er.					

Splits and Phases: 2: Carmen Bergeron & Richelieu

2045 Total Conditions - Option 3 - PM 3: Poupart & Richelieu

	۶	-	4	+	1	Ť	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	1.		44		416		4	
Traffic Volume (vph)	169	69	30	44	193	223	41	172	
Future Volume (vph)	169	69	30	44	193	223	41	172	
Lane Group Flow (vph)	178	398	0	97	0	473	0	420	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8	-	2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	12.1	12.1		12.1		12.8		12.8	
Actuated g/C Ratio	0.36	0.36		0.36		0.39		0.39	
v/c Ratio	0.40	0.52		0.18		0.53		0.64	
Control Delay	11.7	5.1		7.7		10.3		11.2	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	11.7	5.1		7.7		10.3		11.2	
LOS	В	A		А		В		В	
Approach Delay		7.1		7.7		10.3		11.2	
Approach LOS		А		А		В		В	
Queue Length 50th (m)	5.7	2.1		2.3		7.3		9.3	
Queue Length 95th (m)	20.4	16.2		10.2		21.9		36.0	
Internal Link Dist (m)		59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0								
Base Capacity (vph)	687	1011		805		1356		949	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.26	0.39		0.12		0.35		0.44	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 33.2									
Natural Cycle: 45									
Control Type: Actuated-Uncoo	rdinated								
Maximum v/c Ratio: 0.64									
Intersection Signal Delay: 9.2				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilization	n 79.9%			IC	CU Level	of Service	e D		
Analysis Period (min) 15									

Splits and Phases:	3: Poupart & Richelieu		
↑ Ø2		A 04	
23 s		22 s	
Ø6		₩ Ø8	
23 s		22 s	

	≯	1	ţ
Lane Group	EBL	NBT	SBT
Lane Configurations	۲	-۠	A
Traffic Volume (vph)	54	438	493
Future Volume (vph)	54	438	493
Lane Group Flow (vph)	111	536	538
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 46.4% Analysis Period (min) 15

ICU Level of Service A

	≯	$\mathbf{\hat{z}}$	•	t	Ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- M			4ħ	A	
Traffic Volume (veh/h)	54	51	71	438	493	18
Future Volume (Veh/h)	54	51	71	438	493	18
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	57	54	75	461	519	19
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					102	
pX, platoon unblocked						
vC, conflicting volume	909	269	538			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	909	269	538			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	78	93	93			
cM capacity (veh/h)	254	729	1026			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	111	229	307	346	192	
Volume Left	57	75	0	0	0	
Volume Right	54	0	0	0	19	
cSH	372	1026	1700	1700	1700	
Volume to Capacity	0.30	0.07	0.18	0.20	0.11	
Queue Length 95th (m)	9.2	1.8	0.0	0.0	0.0	
Control Delay (s)	18.7	3.4	0.0	0.0	0.0	
Lane LOS	С	А				
Approach Delay (s)	18.7	1.4		0.0		
Approach LOS	С					
Intersection Summarv						
Average Delay			2.4			
Intersection Capacity Utilizatio	n		46.4%	IC	Ulevelo	of Service
Analysis Period (min)			15			

Lane Group EBT EBR WBL WBT NBL NBR Lane Configurations ↑		-	\rightarrow	1	+	1	1
Lane Configurations Image of the second state	Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Traffic Volume (vph) 4997 1645 9 3059 1266 26 Future Volume (vph) 4997 1645 9 3059 1266 26 Lane Group Flow (vph) 5552 1828 10 3399 1407 29 Tum Type NA Perm NA pm+pt Perm Protected Phases 4 8 2 2 Detector Phase 4 4 8 5 Switch Phase 4 4 8 5 2 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 12.0	Lane Configurations	**	1	3	**	3	1
Future Volume (vph) 4997 1645 9 3059 1266 26 Lane Group Flow (vph) 5552 1828 10 3399 1407 29 Turn Type NA Perm Perm NA pm+pt Perm Protected Phases 4 8 2 2 Detector Phase 4 4 8 5 2 Switch Phase 128.0 128.0 128.0 128.0 22.0 22.0 22.0 22.0 22.0 124.0 14.7% Yellow Time (s) 3.5 <td< td=""><td>Traffic Volume (vph)</td><td>4997</td><td>1645</td><td>9</td><td>3059</td><td>1266</td><td>26</td></td<>	Traffic Volume (vph)	4997	1645	9	3059	1266	26
Lane Group Flow (vph) 5552 1828 10 3399 1407 29 Tum Type NA Perm NA pm+pt Perm Protected Phases 4 8 5 Permitted Phases 4 8 8 5 Detector Phase 4 4 8 8 5 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 128.0 128.0 128.0 128.0 22.0 22.0 22.0 22.0 22.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 128.0 14.7% 14.7% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 1.5 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.7% 14.80 18.0 18.0 18.0 18.0 18.0 18.0 18.0	Future Volume (vph)	4997	1645	9	3059	1266	26
Turn Type NA Perm Perm NA pm+pt Perm Protected Phases 4 8 2 2 Detector Phase 4 4 8 5 2 Switch Phase 4 4 8 8 5 2 Switch Phase 14.70 14.70 14.77 14.7% 14.7% 14.7% Total Split (%) 85.3% 85.3% 85.3% 14.7% 14.7% 14.7% Yellow Time (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Lead Hag Eead-Lag 00timize? 8 8.3 0.83 0.83 0.12 0.12 v/c Ratio 0.21 1.54 0.24 1.35 7.	Lane Group Flow (vph)	5552	1828	10	3399	1407	29
Protected Phases 4 8 5 Permitted Phases 4 8 8 2 2 Detector Phase 4 4 8 8 5 2 Switch Phase Minimum Initial (s) 10.0	Turn Type	NA	Perm	Perm	NA	pm+pt	Perm
Permitted Phases 4 8 2 2 Detector Phase 4 4 8 8 5 2 Switch Phase 4 4 8 8 5 2 Switch Phase 5 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 128.0 128.0 128.0 128.0 22.0 22.0 22.0 122.0 14.7% 14.7% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 14.7% 14.7% Yellow Time (s) 0.0<	Protected Phases	4			8	5	
Detector Phase 4 4 8 8 5 2 Switch Phase Minimum Initial (s) 10.0 120.0 120.0 120.0 120.0 120.0 10.0	Permitted Phases		4	8		2	2
Switch Phase Numum Initial (s) 10.0 <th1< td=""><td>Detector Phase</td><td>4</td><td>4</td><td>8</td><td>8</td><td>5</td><td>2</td></th1<>	Detector Phase	4	4	8	8	5	2
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 70 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 70 22.0	Switch Phase						
Minimum Split (s) 22.0 <td>Minimum Initial (s)</td> <td>10.0</td> <td>10.0</td> <td>10.0</td> <td>10.0</td> <td>10.0</td> <td>10.0</td>	Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s) 128.0 128.0 128.0 128.0 128.0 22.0 22.0 Total Split (%) 85.3% 85.3% 85.3% 85.3% 85.3% 14.7% 14.7% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 0.5 0.5 0.5 0.5 0.5 0.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lead-Lag Lead-Lag Ead-Lag Optimize? Recall Mode None None Max Max Act Effect Green (s) 124.0 124.0 124.0 18.0 18.0 Actuated g/C Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F	Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (%) 85.3% 85.3% 85.3% 85.3% 14.7% 14.7% Yellow Time (s) 3.5 3.6 3.6 3.6 3.7.7 3.0.18 Control Delay 563.4 263.5 17.2	Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0
Yellow Time (s) 3.5	Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%
All-Red Time (s) 0.5 0.5 0.5 0.5 0.5 0.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead-Lag Detection 0.0 0.0 0.0 0.0 Lead-Lag Optimize? Recall Mode None None None Max Max Act Effct Green (s) 124.0 124.0 124.0 124.0 124.0 18.0 18.0 Actuated g/C Ratio 0.83 0.83 0.83 0.83 0.13 0.12 0.12 v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 489.1 179.8 2987.7 Approach LOS F F F Queue Length S0th (m) ~1375.8 ~735.5 0.5 ~666.3 ~800.7 7.8 <td>Yellow Time (s)</td> <td>3.5</td> <td>3.5</td> <td>3.5</td> <td>3.5</td> <td>3.5</td> <td>3.5</td>	Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Lost Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lead-Lag Lead-Lag Optimize? Recall Mode None None None Max Max Act Effct Green (s) 124.0 124.0 124.0 124.0 18.0 18.0 Actuated g/C Ratio 0.83 0.83 0.83 0.83 0.12 0.12 v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach LOS F F F F P Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Interna	All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time (s) 4.0 <	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lead/Lag 4.0 4.0 4.0 4.0 4.0 Lead/Lag None None None None Max Max Act Effct Green (s) 124.0 124.0 124.0 124.0 18.0 18.0 Actuated g/C Ratio 0.83 0.83 0.83 0.83 0.12 0.12 v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 489.1 179.8 2987.7 Approach LOS F F F R F F R F F F R R 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #80.5 17.9 Internal Lin	Total Lost Time (s)	1.0	1.0	1.0	1.0	1.0	/ 0
Lead-Lag Optimize? Recall Mode None None None None Max Max Act Effct Green (s) 124.0 124.0 124.0 124.0 18.0 18.0 Actuated g/C Ratio 0.83 0.83 0.83 0.83 0.12 0.12 v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F R F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) 116.5 194.0 73.0 Turn Bay Length (m) 25.0 Ease Capacity (wph) </td <td></td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>4.0</td>		4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode None None None None None Nax Max Act Effct Green (s) 124.0 124.0 124.0 124.0 124.0 124.0 18.0 Actuated g/C Ratio 0.83 0.83 0.83 0.83 0.83 0.12 0.12 v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F R R F F R R Generation (Control Table (Contable (Contable (Control Table (Control Table (Control Table (Cont	Lead Lag Optimizo?						
Act Effct Green (s) 124.0 124.0 124.0 124.0 124.0 124.0 124.0 18.0 Actuated g/C Ratio 0.83 0.83 0.83 0.83 0.83 0.12 0.12 v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F E Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) 116.5 194.0 73.0 1194.0 73.0 Turn Bay Length (m) 25.0 25.0 <td< td=""><td>Leau-Lay Optimize?</td><td>Mana</td><td>Nono</td><td>None</td><td>None</td><td>Max</td><td>Max</td></td<>	Leau-Lay Optimize?	Mana	Nono	None	None	Max	Max
Act Link Green (s) 124.0 </td <td>Act Effet Groen (a)</td> <td>104.0</td> <td>124.0</td> <td>124.0</td> <td>104.0</td> <td>10 0</td> <td>10 A</td>	Act Effet Groen (a)	104.0	124.0	124.0	104.0	10 0	10 A
Actuated g/C Ratio 0.83 0.83 0.83 0.83 0.12 0.12 v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 73.0 Turn Bay Length (m) 25.0 25.0 25.0 25.0 Base Capacity (vph) 2512 1189 42 2512 182 163 </td <td>Act Elici Green (S)</td> <td>124.0</td> <td>124.0</td> <td>124.0</td> <td>124.0</td> <td>10.0</td> <td>10.0</td>	Act Elici Green (S)	124.0	124.0	124.0	124.0	10.0	10.0
V/C Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 7.0 Turn Bay Length (m) 25.0 25.0 25.0 25.0 Base Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 0	Actuated g/C Ratio	0.03	0.03	0.03	0.03	U.IZ	0.12
Control Delay 563.4 263.5 17.2 180.3 3048.0 62.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 73.0 73.0 Turn Bay Length (m) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0	V/C Ratio	Z.Z I	1.54	0.24	100.0	1.13	0.10
Cueue Delay 0.0 <th< td=""><td>Control Delay</td><td>503.4</td><td>203.5</td><td>17.2</td><td>100.3</td><td>3048.0</td><td>02.5</td></th<>	Control Delay	503.4	203.5	17.2	100.3	3048.0	02.5
Total Delay 563.4 263.5 17.2 180.3 3048.0 62.5 LOS F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 73.0 73.0 Turn Bay Length (m) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 Staryation Cap Reductn 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
LOS F F B F F B F F E Approach Delay 489.1 179.8 2987.7 Approach LOS F F F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 73.0 Turn Bay Length (m) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Intersection Summary	Total Delay	563.4	203.5	17.2	180.3	3048.0	62.5
Approach Delay 489.1 1/9.8 2987.7 Approach LOS F F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 73.0 Turn Bay Length (m) 25.0 25.0 25.0 8ase Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Intersection Summary Cycle Length: 150 Actuated Cycle Length: 150 Actuated Cycle: 140 Actuated Cycle: 140 Actuated Uncoordinated Maximum v/c Ratio: 7.73 Intersection LOS: F Intersection LOS: F Intersection LOS: F Intersection Capacity Utilization 246.5% ICU Level of Service H ICU Level of Serv		F ADD 4	F	В		F	E
Approach LOS F F F F Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 7.8 Turn Bay Length (m) 25.0 25.0 25.0 8 Base Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Intersection Summary	Approach Delay	489.1			1/9.8	2987.7	
Queue Length 50th (m) ~1375.8 ~735.5 0.5 ~686.3 ~800.7 7.8 Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 73.0 Turn Bay Length (m) 25.0 25.0 25.0 25.0 Base Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Intersection Summary	Approach LOS	F			F	F	
Queue Length 95th (m) #1371.1 #814.5 3.6 #712.9 #880.5 17.9 Internal Link Dist (m) 116.5 194.0 73.0 73.0 73.0 Turn Bay Length (m) 2512 1189 42 2512 182 163 Base Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0	Queue Length 50th (m)	~1375.8	~735.5	0.5	~686.3	~800.7	7.8
Internal Link Dist (m) 116.5 194.0 73.0 Turn Bay Length (m) 25.0 25.0 25.0 182 163 Base Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 1 1 1 5 1	Queue Length 95th (m)	#1371.1	#814.5	3.6	#712.9	#880.5	17.9
Turn Bay Length (m) 25.0 25.0 Base Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 2.21 1.54 0.24 1.35 7.73 0.18 Intersection Summary Cycle Length: 150	Internal Link Dist (m)	116.5			194.0	73.0	
Base Capacity (vph) 2512 1189 42 2512 182 163 Starvation Cap Reductn 0	Turn Bay Length (m)		25.0	25.0			
Starvation Cap Reductn 0	Base Capacity (vph)	2512	1189	42	2512	182	163
Spillback Cap Reductn 0	Starvation Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn000000Reduced v/c Ratio2.211.540.241.357.730.18Intersection SummaryCycle Length: 150Actuated Cycle Length: 150Natural Cycle: 140Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 7.73Intersection Signal Delay: 696.4Intersection Capacity Utilization 246.5%IcU Level of Service H	Spillback Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio2.211.540.241.357.730.18Intersection SummaryCycle Length: 150Actuated Cycle Length: 150Natural Cycle: 140Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 7.73Intersection Signal Delay: 696.4Intersection Capacity Utilization 246.5%Include Delay (10) Provide Delay (10) Pro	Storage Cap Reductn	0	0	0	0	0	0
Intersection Summary Cycle Length: 150 Actuated Cycle Length: 150 Natural Cycle: 140 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 7.73 Intersection Signal Delay: 696.4 Intersection LOS: F Intersection Capacity Utilization 246.5% ICU Level of Service H	Reduced v/c Ratio	2.21	1.54	0.24	1.35	7.73	0.18
Cycle Length: 150 Actuated Cycle Length: 150 Natural Cycle: 140 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 7.73 Intersection Signal Delay: 696.4 Intersection Capacity Utilization 246.5% ICU Level of Service H	Intersection Summary						
Actuated Cycle Length: 150 Natural Cycle: 140 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 7.73 Intersection Signal Delay: 696.4 Intersection Capacity Utilization 246.5% ICU Level of Service H	Cycle Length: 150						
Natural Cycle: 140 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 7.73 Intersection Signal Delay: 696.4 Intersection Capacity Utilization 246.5% ICU Level of Service H	Actuated Cycle Length: 150	0					
Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 7.73 Intersection Signal Delay: 696.4 Intersection Capacity Utilization 246.5% ICU Level of Service H	Natural Cycle: 140						
Maximum v/c Ratio: 7.73 Intersection Signal Delay: 696.4 Intersection Capacity Utilization 246.5% ICU Level of Service H	Control Type: Actuated-Line	coordinated	1				
Intersection Signal Delay: 696.4 Intersection LOS: F Intersection Capacity Utilization 246.5% ICU Level of Service H	Maximum v/c Ratio: 7 73		-				
Intersection Capacity Utilization 246.5% ICU Level of Service H	Intersection Signal Delay: 6	596.4			l	ntersectio	n LOS F
	Intersection Canacity Litilize	ation 246 5	%		1		of Service
Analysis Period (min) 15	Analysis Period (min) 15		10				
 Volume exceeds capacity, queue is theoretically infinite 	 Volume exceeds capac 	tv queue i	s theoreti	cally infin	ite		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

¶ø2	₩ 24	
22 s	128 s	
Ø 5	₩ Ø8	
22 s	128 s	

	-	\mathbf{r}	-	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	3	44	5	1
Traffic Volume (vph)	2015	284	120	4043	270	78
Future Volume (vph)	2015	284	120	4043	270	78
Lane Group Flow (vph)	2121	299	126	4256	284	82
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
l ead/l ag	l an	l an	Lead	0.2	0.2	0.2
Lead-Lag Ontimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	10	1 0	3.3	33	1 0	10
Actuated a/C Ratio	0.06	0.06	0.0	0.0	0.06	0.06
v/c Ratio	9.00	0.00	0.20	6.22	2.65	0.00
Control Delay	4008 3	23.00	12.6	2363.0	781.8	17 4
	0.00	20.0	0.0	2000.0	0.0	0.0
Total Delay	4008 3	23.0	12.6	2363.0	781.8	17 /
	-000.5 E	20.9	12.0 D	2000.0 E	701.0 E	17.4 R
Annroach Dolay	3516.0	U	D	2205 /	610.5	D
Approach LOS	5510.0			2290.4 E	010.3	
Approach LOS	Г ~11.2	0.0	<u>.</u> 10	۲ م.95 6	Г 	0.0
	~41.3	U.U #12.0	~1.9	0.CO~	~0.1	U.U #C 0
Queue Length 95th (m)	#90.3	#13.0	4.3	#140.9	#31.3	#0.0
Turn Day Longth (m)	194.0	00.0	105.0	213.3	94.8	
Turn Bay Length (m)	045	80.0	125.0	1704	407	470
Base Capacity (vpn)	215	3/6	245	1/64	107	1/2
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	9.87	0.80	0.51	2.41	2.65	0.48
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Length: 16.	3					
Natural Cycle: 150						
Control Type: Actuated-Und	coordinated					
Maximum v/c Ratio: 9.87						
Intersection Signal Delay: 2	621.5			Ir	ntersectio	n LOS: F
Intersection Capacity Utiliza	ation 143.39	%](CU Level	of Service
Analysis Period (min) 15						
~ Volume exceeds capac	ity, queue is	s theoreti	cally infin	ite.		

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2055 Total Conditions - Option 3 - AM 2: Carmen Bergeron & Richelieu

	≯	-	4	+	1	1	ţ	~	
Lane Group	EBL	EBT	WBL	WBT	NBT	SBL	SBT	SBR	
Lane Configurations	5	1.	5	1 .	ፈቤ	-	្ឋ	1	
Traffic Volume (vph)	149	58	22	110	30	72	41	207	
Future Volume (vph)	149	58	22	110	30	72	41	207	
Lane Group Flow (vph)	157	63	23	292	48	0	119	218	
Turn Type	Perm	NA	Perm	NA	NA	Perm	NA	Perm	
Protected Phases		4		8	2		6		
Permitted Phases	4		8			6		6	
Detector Phase	4	4	8	8	2	6	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?	NI	NI	NI	NI	N4' -	14	14	N.4" -	
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effect Green (s)	11.4	11.4	11.4	11.4	11.7		11.7	11.7	
Actuated g/C Ratio	0.37	0.37	0.37	0.37	0.38		0.38	0.38	
V/C Ratio	0.42	0.10	0.05	0.42	0.04		0.22	0.31	
Control Delay	10.0	0.0	5.9	4.9	0.0		0.0	3.1	
Queue Delay	10.6	0.0	0.0	0.0	0.0		0.0	0.0	
	10.0 D	0.0	5.9	4.9	0.C A		0.0 ^	ی. ا ۸	
LUS Approach Dolay	D	0.3	A	5 0	5 8		5 2	A	
Approach LOS		9.3 A		5.0 A	5.0 A		J.Z A		
Approach 200	16	16	0.6	31	0.4		33	0.0	
Queue Length 95th (m)	12 7	5.1	2.6	11 4	24		11 5	77	
Internal Link Dist (m)	12.1	33.9	2.0	74.5	69.2		94.8	1.1	
Turn Bay Length (m)		00.0	25.0	17.5	00.2		0.70		
Base Capacity (vph)	597	1025	737	1010	1967		885	1007	
Starvation Cap Reductn	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.26	0.06	0.03	0.29	0.02		0.13	0.22	
Intersection Summary									
Cycle Length: 15									
Actuated Cycle Length: 31.2									
Natural Cycle: 45									
Control Type: Actuated-Unco	ordinated								
Maximum v/c Ratio: 0.42									
Intersection Signal Delay: 6 1	1			Ir	ntersectio	n I OS [.] A			
Intersection Capacity Utilizati	ion 48 8%				CU Level	of Service	Α		
Analysis Period (min) 15							-		
Splits and Phases:	2: Carmen Bergeron & Richelieu								
--------------------	--------------------------------	-------------	--						
↑ ø₂		<u>≁</u> 04							
23 s		22 s							
Ø6		↓ Ø8							
23 s		22 s							

2055 Total Conditions - Option 3 - AM 3: Poupart & Richelieu

	≯	-	4	+	1	1	1	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	1.		4		ፈቴ		4	_
Traffic Volume (vph)	71	11	14	38	231	122	15	92	
Future Volume (vph)	71	11	14	38	231	122	15	92	
Lane Group Flow (vph)	75	103	0	74	0	376	0	217	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.1	10.1		10.1		17.4		17.4	
Actuated g/C Ratio	0.36	0.36		0.36		0.63		0.63	
v/c Ratio	0.17	0.17		0.13		0.26		0.21	
Control Delay	7.6	3.3		5.9		5.9		4.0	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	7.6	3.3		5.9		5.9		4.0	
LOS	A	A		A		A		A	
Approach Delay		5.1		5.9		5.9		4.0	
Approach LOS		A		A		A		A	
Queue Length 50th (m)	2.0	0.3		1.4		5.8		3.1	
Queue Length 95th (m)	6.6	4.7		5.6		10.7		9.2	
Internal Link Dist (m)	00.0	59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0	4000		4040		4070		4000	
Base Capacity (vph)	815	1028		1018		18/0		1290	
Starvation Cap Reductin	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced V/c Ratio	0.09	0.10		0.07		0.20		0.17	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 27.8									
Natural Cycle: 45									
Control Type: Actuated-Uncoc	ordinated								
Maximum v/c Ratio: 0.26									
Intersection Signal Delay: 5.3				lr	ntersectio	n LOS: A			
Intersection Capacity Utilization	on 46.7%			10	CU Level	of Service	Α		
Analysis Period (min) 15									

Splits and Phases:	3: Poupart & Richelieu		
↑ ø2		A 04	
23 s		22 s	
Ø6		↓ Ø8	
23 s		22 s	

4: Poupart & Walma	rt Drive	eway		AM.syr
	۶	Ť	ţ	
Lane Group	EBL	NBT	SBT	
Lane Configurations	¥	4¢	∱î ≽	
Traffic Volume (vph)	3	337	165	
Future Volume (vph)	3	337	165	
Lane Group Flow (vph)	25	394	201	
Sign Control	Stop	Free	Free	
Intersection Summary				
Control Type: Unsignalized				

Intersection Capacity Utilization 30.0% Analysis Period (min) 15

ICU Level of Service A

	۶	$\mathbf{\hat{z}}$	•	t	Ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- Y			4ħ	A	
Traffic Volume (veh/h)	3	21	37	337	165	26
Future Volume (Veh/h)	3	21	37	337	165	26
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	3	22	39	355	174	27
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					102	
pX, platoon unblocked						
vC, conflicting volume	443	100	201			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	443	100	201			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	98	97			
cM capacity (veh/h)	528	935	1368			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	25	157	237	116	85	
Volume Left	3	39	0	0	0	
Volume Right	22	0	0	0	27	
cSH	856	1368	1700	1700	1700	
Volume to Capacity	0.03	0.03	0.14	0.07	0.05	
Queue Length 95th (m)	0.7	0.7	0.0	0.0	0.0	
Control Delay (s)	9.3	2.1	0.0	0.0	0.0	
Lane LOS	А	А				
Approach Delay (s)	9.3	0.8		0.0		
Approach LOS	А					
Intersection Summarv						
Average Delay			0.9			
Intersection Canacity Utilization	n		30.0%	IC	CU Level o	of Service
Analysis Period (min)			15			

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	* *	1	ሻ	44	5	1
Traffic Volume (vph)	2340	844	32	4406	1530	6
Future Volume (vph)	2340	844	32	4406	1530	6
Lane Group Flow (vph)	2600	938	36	4896	1700	7
Turn Type	NA	Perm	Perm	NA	Prot	Perm
Protected Phases	4			8	2	
Permitted Phases		4	8			2
Detector Phase	4	4	8	8	2	2
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0
Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0
Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	Max	Max
Act Effct Green (s)	124.0	124.0	124.0	124.0	18.0	18.0
Actuated g/C Ratio	0.83	0.83	0.83	0.83	0.12	0.12
v/c Ratio	1.04	0.78	0.86	1.95	9.34	0.04
Control Delay	42.0	8.7	121.8	446.9	3770.8	55.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.0	8.7	121.8	446.9	3770.8	55.3
LOS	D	А	F	F	F	E
Approach Delav	33.1			444.6	3755.6	_
Approach LOS	С			F	F	
Queue Length 50th (m)	~430.4	54.4	5.1	~1165.7	~979.0	1.6
Queue Length 95th (m)	#465.6	103.9	#21.0	#1171.5	#1057.5	6.4
Internal Link Dist (m)	116.5			194.0	73.0	0.1
Turn Bay Length (m)		25.0	25.0			
Base Capacity (vph)	2512	1195	42	2512	182	164
Starvation Cap Reductn	0	0	.2	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.04	0.78	0.86	1.95	9.34	0.04
Intersection Summany						
Cuele Longth: 150						
Cycle Length: 150	\ \					
Actuated Cycle Length: 150)					
Natural Cycle: 150	المعالم ما					
Control Type: Actuated-Unc	coordinated	 				
Intersection Claud Dudy	50.0				atom of the	
Intersection Signal Delay: 8	50.9)/			ntersectio	n LUS: F
Intersection Capacity Utiliza	1110n 244.5	/0			CU Level	of Service
Analysis Period (min) 15	4 •					
 Volume exceeds capaci 	ity, queue i	s theoreti	cally infir	nite.		

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

√ø₂	- ∞ •Ø4	
22 s	128 s	
	₹Ø8	
	128 s	

	-	\rightarrow	-	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	1	3	44	5	1
Traffic Volume (vph)	4887	479	191	3070	242	205
Future Volume (vph)	4887	479	191	3070	242	205
Lane Group Flow (vph)	5144	504	201	3232	255	216
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	27.2	27.2	11.2	27.2	23.2	23.2
Total Split (s)	7.2	7.2	7.2	7.2	6.2	6.2
Total Split (%)	35.0%	35.0%	35.0%	35.0%	30.1%	30.1%
Yellow Time (s)	4.6	4.6	4.6	4.6	3.3	3.3
All-Red Time (s)	1.6	1.6	1.6	1.6	1.9	1.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	5.2	5.2
Lead/Lag	Lag	Lag	Lead	0.2	0.2	0.2
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	None	None	None	None	None	None
Act Effct Green (s)	1.0	1 0	6.4	6.4	1.0	1 0
Actuated g/C Ratio	0.05	0.05	0.33	0.33	0.05	0.05
v/c Ratio	28.58	1 10	0.55	2.89	2.83	0.00
Control Delay	12451 0	84.6	10.7	868.6	873.4	25.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12451.0	84.6	10.7	868	873.4	25.4
LOS	F	54.0 F	R	500.0 F	F	20.7 C
Annroach Delay	11347 5	1	U	818.4	484 5	U
Approach LOS	F			570.4 F	-05 F	
Oueue Length 50th (m)	~18/1.8	~5.5	21	~03 6	~1/ 0	0.0
	#202.8	#24 A	6.6	#111 0	#28.7	#10 Q
Internal Link Diet (m)	π202.0 101.0	π24.4	0.0	π111.0 272.2	π20.1 Q1 Q	π10.3
Turn Bay Length (m)	134.0	80.0	125.0	213.3	94.0	
Rase Capacity (uph)	190	159	261	1/77	00	285
Starvation Can Poducto	100	400	504	1477	90	200
Starvation Cap Reductin	0	0	0	0	0	0
Spillback Cap Reductin	0	0	0	0	0	0
Storage Cap Reductin	00.50	1 1 0	0 55	0	0	0.76
Reduced V/C Ratio	20.50	1.10	0.55	2.19	2.83	0.76
Intersection Summary						
Cycle Length: 20.6						
Actuated Cycle Length: 19.	2					
Natural Cycle: 150						
Control Type: Actuated-Une	coordinated					
Maximum v/c Ratio: 28.58						
Intersection Signal Delay: 7	027.7			Ir	ntersectio	n LOS: F
Intersection Capacity Utiliza	ation 182.69	%		10	CU Level	of Service
Analysis Period (min) 15						
~ Volume exceeds capac	ity, queue is	s theoreti	cally infin	iite.		

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Carmen Bergeron & County Rd 17

2055 Total Conditions - Option 3 - PM 2: Carmen Bergeron & Richelieu

	≯	-	4	+	1	1	1	Ŧ	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	5	ţ,	5	ĥ		416		ដ	1	
Traffic Volume (vph)	171	112	27	89	2	72	292	144	154	
Future Volume (vph)	171	112	27	89	2	72	292	144	154	
Lane Group Flow (vph)	180	120	28	310	0	126	0	459	162	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8		2		6		6	
Detector Phase	4	4	8	8	2	2	6	6	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0	4.0	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Min	Min	Min	Min	Min	
Act Effct Green (s)	13.1	13.1	13.1	13.1		18.1		18.1	18.1	
Actuated g/C Ratio	0.33	0.33	0.33	0.33		0.46		0.46	0.46	
v/c Ratio	0.60	0.20	0.07	0.46		0.09		0.79	0.21	
Control Delay	20.3	10.1	9.2	6.0		5.1		24.1	2.7	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Total Delay	20.3	10.1	9.2	6.0		5.1		24.1	2.7	
LOS	С	В	А	А		Α		С	Α	
Approach Delay		16.2		6.3		5.1		18.5		
Approach LOS		В		А		Α		В		
Queue Length 50th (m)	9.8	5.6	1.3	4.4		1.3		22.0	0.0	
Queue Length 95th (m)	23.8	12.8	4.5	16.0		5.0		#73.4	7.1	
Internal Link Dist (m)		33.9		74.5		69.2		94.8		
Turn Bay Length (m)			25.0							
Base Capacity (vph)	416	815	555	847		1493		620	815	
Starvation Cap Reductn	0	0	0	0		0		0	0	
Spillback Cap Reductn	0	0	0	0		0		0	0	
Storage Cap Reductn	0	0	0	0		0		0	0	
Reduced v/c Ratio	0.43	0.15	0.05	0.37		0.08		0.74	0.20	
Intersection Summary										
Cycle Length: 45										
Actuated Cycle Length: 39.3	}									
Natural Cycle: 55										
Control Type: Actuated-Unc	oordinated									
Maximum v/c Ratio: 0.79										
Intersection Signal Delay: 13	3.8			Ir	ntersectio	n LOS: B				
Intersection Capacity Utiliza	tion 70.0%			(CU Level	of Service	ЭC			
Analysis Period (min) 15										
		•.								

95th percentile volume exceeds capacity, queue may be longer.

PM.syn

Queue shown is maximum after two cycles.

Splits and Phases: 2: Carmen Bergeron & Richelieu

2055 Total Conditions - Option 3 - PM 3: Poupart & Richelieu

	۶	-	4	+	1	1	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	1.		4		ፈቴ	-	4	_
Traffic Volume (vph)	169	69	30	44	193	223	41	172	
Future Volume (vph)	169	69	30	44	193	223	41	172	
Lane Group Flow (vph)	178	398	0	97	0	473	0	420	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	23.0	23.0	23.0	23.0	
Total Split (%)	48.9%	48.9%	48.9%	48.9%	51.1%	51.1%	51.1%	51.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	12.1	12.1		12.1		12.8		12.8	
Actuated g/C Ratio	0.36	0.36		0.36		0.39		0.39	
v/c Ratio	0.40	0.52		0.18		0.53		0.64	
Control Delay	11.7	5.1		7.7		10.3		11.2	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	11.7	5.1		7.7		10.3		11.2	
LOS	В	Α		А		В		В	
Approach Delay		7.1		7.7		10.3		11.2	
Approach LOS		А		А		В		В	
Queue Length 50th (m)	5.7	2.1		2.3		7.3		9.3	
Queue Length 95th (m)	20.4	16.2		10.2		21.9		36.0	
Internal Link Dist (m)		59.9		24.8		77.8		42.7	
Turn Bay Length (m)	20.0								
Base Capacity (vph)	687	1011		805		1356		949	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.26	0.39		0.12		0.35		0.44	
Intersection Summary									
Cycle Length: 45									
Actuated Cycle Length: 33.2									
Natural Cycle: 45									
Control Type: Actuated-Uncoc	ordinated								
Maximum v/c Ratio: 0.64									
Intersection Signal Delay: 9.2				Ir	ntersectio	n LOS: A			
Intersection Capacity Utilizatio	n 79.9%			IC	CU Level	of Service	e D		
Analysis Period (min) 15									

Splits and Phases:	3: Poupart & Richelieu		
↑ ø₂		<u></u> ø₄	
23 s		22 s	
Ø6		₩ Ø8	
23 s		22 s	

	≯	1	Ŧ
Lane Group	EBL	NBT	SBT
Lane Configurations	Y	-4↑	≜ †₽
Traffic Volume (vph)	54	438	493
Future Volume (vph)	54	438	493
Lane Group Flow (vph)	111	536	538
Sign Control	Stop	Free	Free
Intersection Summary			
Control Type: Unsignalized			

Intersection Capacity Utilization 46.4% Analysis Period (min) 15

ICU Level of Service A

PM.syn

	۶	$\mathbf{\hat{z}}$	•	t	Ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- Y			{t†	A	
Traffic Volume (veh/h)	54	51	71	438	493	18
Future Volume (Veh/h)	54	51	71	438	493	18
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	57	54	75	461	519	19
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					102	
pX, platoon unblocked						
vC, conflicting volume	909	269	538			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	909	269	538			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	78	93	93			
cM capacity (veh/h)	254	729	1026			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	111	229	307	346	192	
Volume Left	57	75	0	0	0	
Volume Right	54	0	0	0	19	
cSH	372	1026	1700	1700	1700	
Volume to Capacity	0.30	0.07	0.18	0.20	0.11	
Queue Length 95th (m)	9.2	1.8	0.0	0.0	0.0	
Control Delay (s)	18.7	3.4	0.0	0.0	0.0	
Lane LOS	С	А				
Approach Delay (s)	18.7	1.4		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			2.4			
Intersection Capacity Utilization	n		46.4%	IC	CU Level o	of Service
Analysis Period (min)	· · ·		15		, _ .	

PM.syn

	-	\rightarrow	-	-	1	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	44	1	5	**	5	1		
Traffic Volume (vph)	5584	1645	9	3398	1266	26		
Future Volume (vph)	5584	1645	9	3398	1266	26		
Lane Group Flow (vph)	6204	1828	10	3776	1407	29		
Turn Type	NA	Perm	Perm	NA	pm+pt	Perm		
Protected Phases	4			8	5			
Permitted Phases		4	8		2	2		
Detector Phase	4	4	8	8	5	2		
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0		
Total Split (s)	128.0	128.0	128.0	128.0	22.0	22.0		
Total Split (%)	85.3%	85.3%	85.3%	85.3%	14.7%	14.7%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5		
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.0	0.0 4 0	4.0	1 O	0.0 4 0	۵.0 ۵.0		
	4.0	4.0	4.0	+.U	+.0	ч.U		
Lead-Lag Optimize?								
	None	None	None	None	Max	Max		
Act Effet Green (c)	12/ 0	124.0	124.0	124.0		19.0		
Act Elici Green (S)	124.0	124.0	124.0	124.0	10.0	0.10		
	0.03	0.03	0.03	0.03	U. IZ	0.12		
V/C Ratio	2.47	1.00	0.24	1.50	1.13	0.10		
Control Delay	0/9.2	207.8	17.2	247.7	3048.0	62.5		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	6/9.2	267.8	17.2	247.7	3048.0	62.5		
LUS	+	F	В		+	E		
Approach Delay	585.5			247.1	2987.7			
Approach LOS	F			F	F	_ •		
Queue Length 50th (m)	~1584.7	~739.7	0.5	~807.1	~800.7	7.8		
Queue Length 95th (m)	#1569.0	#818.7	3.6	#828.8	#880.5	17.9		
Internal Link Dist (m)	116.5			194.0	73.0			
Turn Bay Length (m)		25.0	25.0					
Base Capacity (vph)	2512	1182	42	2512	182	163		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	2.47	1.55	0.24	1.50	7.73	0.18		
Intersection Summary								
Cycle Length: 150								
Actuated Cycle Length: 15	0							
Natural Cycle: 140	0							
Control Type: Actuated-I In	coordinated	4						
Maximum v/c Patio: 7.72		A						
Intersection Signal Delay:	Intersection Signal Delay: 7/0.1							
Intersection Capacity Utilia	ation 265.2	0/		I		of Service		
Analysis Pariod (min) 45	auon 200.2	/0			CO Level	UI Selvice		
~ Volume exceeds conc	oity auque i	e theoreti	cally infin	vito				
 volume exceeds capad 	city, queue i	is theoreti	cally infin	iite.				

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases:	5: Street 1 & County Rd 17
--------------------	----------------------------

¶ø2	₩ 24	
22 s	128 s	
Ø 5	₩ Ø8	
22 s	128 s	

Appendix I

Domestic Water Demands, Boundary Conditions, and Hydraulic

Active Scenario: Form1-2-MDD+FIRE-SS

Jacobs.

CR-WDS_Model-2023-10-24.wtg 11/8/2023 Clarence-Rockland Hydraulics Engineering Services West Secondary Plan Boundary Conditions Active Scenario: Form1-2-MDD+FIRE-SS

Jacobs.

CR-WDS_Model-2023-10-24.wtg 11/8/2023

CR-WDS_Model-2023-10-24.wtg 10/25/2023

CR-WDS_Model-2023-10-24.wtg 10/25/2023

DOMESTIC WATER DEMAND CALCULATION SHEET Rockland West - Secondary Plan City Clarence-Rockalnd

Option '

Land Use	Area (sq-m)	Area (ha)	No. Employee (85 per ha)	No. Units	Pop (res) 1.8 ppu
Service Commercial	143502.10	14.35	1220		
Business Park	162546.60	16.25	1382		
Commerical Core	158537.90	15.85	1348		
Commerical Core (res)	0.00	0.00		161	290
Medium Density Res	40238.40	4.02		141	254
High Density Res	41397.80	4.14		275	496
SUB-TOTAL		54.622	3949	577	1039

AVG Demand (L/s)				
Non-Res	Res	Total		
4.94		4.94		
5.60		5.60		
5.46		5.46		
	0.65	0.65		
	0.57	0.57		
	1.12	1.12		
16.00	2.34	18.33		

MAX Day Demand (L/s)					
Non-Res	Res	Total			
8.89		8.89			
10.07		10.07			
9.83		9.83			
	1.17	1.17			
	1.03	1.03			
	2.01	2.01			
29	4.21	33.00			

DESIGN ASSUMPTIONS (per Jacobs)

Non-Residential Land Use	Design Criteria
Service Commercial	28000 L/ha/day
Service Commercial*	85 employee/ha
Business Park	28000 L/ha/day
Business Park*	85 employee/ha
Commercial Core	28000 L/ha/day
Commercial Core*	85 employee/ha
Employment Usage	75 L/empl/day

Note *: 75% of development at 80 persons/ha & 25% at 100 person per ha : Commercial/Employment Usage of 75 L/day (Ottawa) : Res Density - 1.8 person/unit (apt)

Residential Land Use	Design Criteria
Medium Density	350 L/cap/day
High Density	350 L/cap/day
Commercial Core (residential)	350 L/cap/day

Residential Land Use	Average Unit Density**
Medium Density	50 units/ha
High Density	95 units/ha
Commercial Core (residential)	72.5 units/ha

Note **: ha is referring to developable land area not gross area.

Peaking Factor	Design Criteria
Res: Max Day to Avg Day	1.8 Section 6.2.1
Res: Peak Hr to Max Day	1.5 Section 6.2.1
ICI: Avg to Max	1.8 Section 6.2.1
ICI: Max to Peak	1.5 Section 6.2.1

AVG	Demand (L/s)	MAX D	ay Demar	nd (L/s) Peak Hour Dema		our Dema	nd (L/s)	
Non-Res	Res	Total	Non-Res	Res	Total		Non-Res	Res	Total
4.65		4.65	8.37		8.37		12.56		12.56
5.27		5.27	9.48		9.48		14.22		14.22
5.14		5.14	9.25		9.25		13.87		13.87
	0.65	0.65		1.17	1.17			1.76	1.76
	0.57	0.57		1.03	1.03			1.54	1.54
	1.12	1.12		2.01	2.01			3.01	3.01
15.06	2.34	17.39	27.10	4.21	31.31		40.65	6.31	46.96

Peak Hour Demand (L/s)				
Non-Res	Res	Total		
13.34		13.34		
15.11	15.11 15			
14.74		14.74		
	1.76	1.76		
	1.54	1.54		
3.01 3.07				
43.19	6.31	49.50		

DOMESTIC WATER DEMAND CALCULATION SHEET Rockland West - Secondary Plan City Clarence-Rockalnd Option 3

Land Use	Area (sq-m)	Area (ha)	No. Employee (85 per ha)	No. Units	Pop (res) 1.8 ppu
Service Commercial	14525.30	1.45	123		
Business Park	466794.00	46.68	3968		
Commerical Core	0.00	0.00			
Commerical Core (res)	0.00	0.00		0	0
Medium Density Res	64903.60	6.49		227	409
High Density Res	0.00	0.00		0	0
SUB-TOTAL		54.622	4091	227	409

	AVG Demand (L/s)			
	Total	Res	Non-Res	
)	0.50		0.50	
7	16.07		16.07	
)	0.00		0.00	
)	0.00	0.00		
2	0.92	0.92		
)	0.00	0.00		
)	17.49	0.92	16.57	

MAX Day Demand (L/s)				
Non-Res	Res	Total		
0.00		0.00		
28.03		28.03		
20.95		20.93		
0.00		0.00		
	0.00	0.00		
	1.66	1.66		
	0.00	0.00		
30	1.66	31.49		

DESIGN ASSUMPTIONS (per Jacobs)

Non-Residential Land Use	Design Criteria
Service Commercial	28000 L/ha/day
Service Commercial*	85 employee/ha
Business Park	28000 L/ha/day
Business Park*	85 employee/ha
Commercial Core	28000 L/ha/day
Commercial Core*	85 employee/ha
Employment Usage	75 L/empl/day

Note *: 75% of development at 80 persons/ha & 25% at 100 person per ha : Commercial/Employment Usage of 75 L/day (Ottawa)

: Res Density - 1.8 person/unit (apt)

Residential Land Use	Design Criteria
Medium Density	350 L/cap/day
High Density	350 L/cap/day
Commercial Core (residential)	350 L/cap/day

Residential Land Use	Average Unit Density**
Medium Density	50 units/ha
High Density	95 units/ha
Commercial Core (residential)	72.5 units/ha

Note **: ha is referring to developable land area not gross area.

Peaking Factor	Design Criteria
Res: Max Day to Avg Day	1.8 Section 6.2.1
Res: Peak Hr to Max Day	1.5 Section 6.2.1
ICI: Avg to Max	1.8 Section 6.2.1
ICI: Max to Peak	1.5 Section 6.2.1

AVG Demand (L/s)		MAX D	ay Demar	nd (L/s)	
Non-Res	Res	Total	Non-Res	Res	Total
0.47		0.47	0.85		3.0
15.13		15.13	27.23		27.2
0.00		0.00	0.00		0.0
	0.00	0.00		0.00	0.0
	0.92	0.92		1.66	1.6
	0.00	0.00		0.00	0.0
15.60	0.92	16.52	28.08	1.66	29.7

Peak Hour Demand (L/s)				
Non-Res	Res	Total		
1.35		1.35		
43.40		43.40		
0.00		0.00		
	0.00	0.00		
	2.48	2.48		
	0.00	0.00		
44.75	2.48	47.23		

	Peak Hour Demand (L/s)			
	Non-Res	Res	Total	
85	1.27		1.27	
23	40.84		40.84	
00	0.00		0.00	
00		0.00	0.00	
66		2.48	2.48	
00		0.00	0.00	
73	42.12	2.48	44.60	

ROCKLAND SECONDARY PLAN OPTION 1 EXISTING AVERAGE DAY DEMAND

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

ROCKLAND SECONDARY PLAN OPTION 1 EXISTING MAXIMUM DAY DEMAND PLUS FIRE FLOW (175 L/s)

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

ROCKLAND SECONDARY PLAN OPTION 1 EXISTING PEAK HOUR DEMAND

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

ROCKLAND SECONDARY PLAN OPTION 3 EXISTING AVERAGE DAY DEMAND

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

ROCKLAND SECONDARY PLAN OPTION 3 EXISTING MAXIMUM DAY DEMAND PLUS FIRE FLOW (175 L/s)

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

ROCKLAND SECONDARY PLAN OPTION 3 EXISTING PEAK HOUR DEMAND

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

ROCKLAND SECONDARY PLAN OPTION 1 FUTURE MAXIMUM DAY DEMAND PLUS FIRE FLOW

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

ROCKLAND SECONDARY PLAN OPTION 3 FUTURE MAXIMUM DAY DEMAND PLUS FIRE FLOW

Rockland Secondary Plan - Option 1 and 3.wtg 2023-11-21

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Appendix J

Sanitary Sewer Design Sheets

TM-C2 - Wastewater Collection System Hydraulic Analysis Report -Final

Scenario	Recommendations
2031	Trunk Sewers: No new surcharge issues.
	A new gravity sewer is required to convey flows from the Special Study Area west of Walmart to
	SPS-3. The alignment is shown in Appendix C.
	Local Sewers: No new surcharge issues.
	MH Freeboard: No new freeboard issues.

Jacobs

JR J.L.R		ANNERS		SANITARY SEWER DESIGN SHEET PROJECT: SECONDARY PLAN - ROCKLAND WEST - OPTION 1 JLR NO.: 31097-000												Prepared By: MM Reviewed By: AW																			
LOCA	TION					Re	sidentia	I Flows				Commercial/I	nstitutional	Flows		Infiltration Flow	S					Se	wer Data					1	Upstream	Geometry	1	T	Downstream	Geometry	
Street Name	From MH	To MH	Area (ha)	Un (1.8	nits Po ppu)	op.	Cumu Area	Pop.	Peaking Factor	Residential Flows (L/s)	Area (ha)	Cum. Area (ha)	Peaking Factor	Comm/Inst. Flows (L/s)	Total Infiltration Areas (ha)	Total Cum. Infiltration Areas (ha)	Infiltration Flows (L/s)	TOTAL EST. PEAK FLOW (L/s)	Туре	Nominal Dia. (mm)	Actual Dia. (mm)	Slope	Length (m)	Q Full (L/s)	V Full (m/s)	Residual Capacity (L/s)	% Full	TG From	Obvert	Invert	Cover	TG To	Drop Obvert	Invert	Cover
OPTION 1	MH5	MH4			0	0	0.00	0	3.80	0.00	7.37	7.37	1.50	3.58	7.37	7.37	2.06	5.64	PVC	200	203.20	0.40%	75.00	21.64	0.67	16.00	26%	52.330	50.520	50.317	1.810	52.800	50.220	50.017	2.580
OPTION 1	MH7	MH6			(0	0.00	0	3.80	0.00	15.87	15.87	1.50	7.71	15.87	15.87	4.44	12.16	PVC	200	203.20	3.00%	200.00	59.26	1.83	47.11	21%	58.640	56.520	56.317	2.120	52.990	50.520	50.317	2.470
OPTION 1	MH6	MH4			0	0	0.00	0	3.80	0.00	7.37	23.24	1.50	11.30	7.37	23.24	6.51	17.80	PVC	200	203.20	0.40%	75.00	21.64	0.67	3.84	82%	52.990	50.520	50.317	2.470	52.800	50.220	50.017	2.580
OPTION 1	MH4	MH3	-	1	59 28	86	0.00	286	3.47	4 02	15.85	46.46	1.50	22.58	15.85	46.46	13.01	39.62	PVC	300	304.80	0.30%	200.00	55.26	0.76	15.64	72%	52 800	50 220	49 915	2 580	53 270	49 620	49 315	3 650
					20		0.00	200	0.11	1.02	10.00	10.10	1.00	22.00	10.00	10.10	10.01	00.02			001.00	0.0070	200.00	00.20	0.10	10.01	12/0	02.000	00.220	10.010	2.000	00.210	-10.020	-10.010	0.000
OPTION 1	MH8	MH7	4.02	14	44 25	59	4.02	259	3.48	3.66		0.00	1.50	0.00	4.02	4.02	1.13	4.78	PVC	200	203.20	6.00%	100.00	83.81	2.58	79.03	6%	63.940	60.420	60.217	3.520	58.640	54,420	54.217	4,220
OPTION 1	MH7	MH3			0	0	4.02	259	3.48	3.66		0.00	1.50	0.00	0.00	4.02	1.13	4.78	PVC	200	203.20	6.00%	80.00	83.81	2.58	79.03	6%	58.640	54.420	54.217	4.220	53.270	49.620	49.417	3.650
OPTION 1	MH3	MH2	4.14	20	66 47	79	8.16	1024	3.23	13.42		46.46	1.50	22.58	4.14	54.62	15.29	51.30	PVC	300	304.80	0.30%	40.00	55.26	0.76	3.96	93%	53.270	49.620	49.315	3.650	52.000	49.500	49.195	2.500
OPTION 1	MH2	EX PS			(0	8.16	1024	3.23	13.42		46.46	1.50	22.58	0.00	54.62	15.29	51.30	PVC	300	304.80	0.30%	1000.00	55.26	0.76	3.96	93%	52.000	49.500	49.195	2.500	50.500	46.500	46.195	4.000

Design Parameters (Per OSDG and ISTB-2018-01)										
Residential Avg. Flows =	350	L/Cap/d								
Comm./Instit. Avg. Flows =	28000	L/ha/d								
Infiltration Allowance =	0.28	L/s/ha								
Manning Coefficient =	0.013	unitless								
Legend										
89.232	Proposed Mainline Sewers									
89.232	rmation)									

		anners		SANITARY SEWER DESIGN SHEET PROJECT: SECONDARY PLAN - ROCKLAND WEST - OPTION 3 JLR NO.: 31097-000 Residential Flows Residential Flows Sewer Data									Prepared By: MM Reviewed By: AW Upstream Geometry Downstream Geometry																					
Street Name	From MH	То МН	Area (ha)	Units (1.8 ppu)	Pop.	Cum	ulative Pop.	Peaking Factor	Residential Flows (L/s)	Area (ha)	Cum. Area (ha)	Peaking Factor	Comm/Inst. Flows (L/s)	Total Infiltration Areas (ha)	Total Cum. Infiltration Areas (ha)	Infiltration Flows (L/s)	TOTAL EST. PEAK FLOW (L/s)	Туре	Nominal Dia. (mm)	Actual Dia. (mm)	Slope	Length (m)	Q Full (L/s)	V Full (m/s)	Residual Capacity (L/s)	% Full	TG From	Obvert	Invert	Cover	TG To	Drop Obvert	Invert	Cover
OPTION 1	MH5	MH4			0	0.00	0	3.80	0.00	7.37	7.37	1.50	3.58	7.37	7.37	2.06	5.64	PVC	200	203.20	0.40%	75.00	21.64	0.67	16.00	26%	52.330	50.490	50.287	1.840	52.800	50.190	49.987	2.610
	MU17	MUC			0	0.00	0	0.00	0.00	45.07	45.07	4.50	7.74	45.07	45.07	4.44	40.40	DV/O		000.00	2.00%	450.00	50.00	4.00	47.44	040/	50.040	54.000	54 707	0.050	50.000	50.400	50.007	0.500
	MH7	MH6			0	0.00	0	3.80	0.00	15.87	15.87	1.50	1./1	15.87	15.87	4.44	12.16	PVC	200	203.20	3.00%	150.00	59.26	1.83	47.11	21%	58.640	54.990	54./8/	3.650	52.990	50.490	50.287	2.500
OPTION I	IVIHO	MH4		-	0	0.00	U	3.80	0.00	1.31	23.24	1.50	11.30	1.31	23.24	0.01	17.80	PVC	200	203.20	0.40%	75.00	21.04	0.67	3.84	82%	52.990	50.490	50.287	2.500	52.800	50.190	49.987	2.610
OPTION 1	MH4	MH3	1	159	286	0.00	286	3.47	4.02	15.85	46.46	1.50	22.58	15.85	46 46	13.01	39.62	PVC	300	304.80	0.30%	150.00	55.26	0.76	15.64	72%	52 800	50 190	49 885	2 610	53 270	49 740	49 435	3 530
				100	200	0.00	200	0.11	1.02	10.00	10.10	1.00	22.00	10.00	10.10	10.01	00.02			001.00	0.0070	100.00	00.20	0.10	10.01	1270	02.000	00.100	-10.000	2.010	00.270		-10.100	0.000
OPTION 1	MH8	MH7	4.02	144	259	4.02	259	3.48	3.66		0.00	1.50	0.00	4.02	4.02	1.13	4.78	PVC	200	203.20	6.00%	100.00	83.81	2.58	79.03	6%	63.940	60.540	60.337	3,400	58.640	54,540	54.337	4,100
OPTION 1	MH7	MH3			0	4.02	259	3.48	3.66		0.00	1.50	0.00	0.00	4.02	1.13	4.78	PVC	200	203.20	6.00%	80.00	83.81	2.58	79.03	6%	58.640	54.540	54.337	4.100	53.270	49.740	49.537	3.530
OPTION 1	MH3	MH2B	4.14	266	479	8.16	1024	3.23	13.42		46.46	1.50	22.58	4.14	54.62	15.29	51.30	PVC	300	304.80	0.30%	40.00	55.26	0.76	3.96	93%	53.270	49.740	49.435	3.530	52.000	49.620	49.315	2.380
OPTION 1	MH2B	MH2			0	8.16	1024	3.23	13.42		46.46	1.50	22.58	0.00	54.62	15.29	51.30	PVC	300	304.80	0.30%	40.00	55.26	0.76	3.96	93%	53.270	49.620	49.315	3.650	53.000	49.500	49.195	3.500
OPTION 1	MH2	EX PS				8.16	1024	3.23	13.42		46.46	1.50	22.58	0.00	54.62	15.29	51.30	PVC	300	304.80	0.30%	1000.00	55.26	0.76	3.96	93%	52.000	49.500	49.195	2.500	50.500	46.500	46.195	4.000

Design Parameters (Per OSDG and IST	B-2018-01)	
Residential Avg. Flows =	350	L/Cap/d
Comm./Instit. Avg. Flows =	28000	L/ha/d
Infiltration Allowance =	0.28	L/s/ha
Manning Coefficient =	0.013	unitless
Legend		
80.232	Proposed Mainlin	e Sewers

89.232 Ex. (As-Built Information)

Storm Water Pond Sizing

kland, ON	SEC	ONDARY	STUDY
	kland,	ON	

Existing Drainage Conditions

J.L. Richards copyright and	DESIGN:	ID	JLR NO.: 31097-000
oroject of these inal project	DRAWN:	ID	
permitted or rization of JLR	CHECKED:	BP	TIOUNET

Existing Drainage Conditions - 1:100 year 24-hour SCS Storm - Input File

[TITLE] ;:Project Title/Notes				;;Name	Date	Time	Value
(OPTIONS) (OPTIONS) (OPTIONS) FLOW UNITS CMS INFILTRATION HORTO FLOW ROUTING DYNNAN LINK-OFFSETS DEFIN MIN SLOPE ALLOW PONDING NO SKIP_STEADY_STATE NO	N JE			fainfall (mm/hr 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002) 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:15:00 00:30:00 01:45:00 01:5:00 01:30:00 01:45:00 01:45:00 02:00:00	0.72 0.72 0.72 0.336 0.336 0.336 0.336 0.624
START DATE 01/01. START TIME 00:00. REPORT START DATE 01/01. REPORT START TIME 01/02. END TIME 01/02. SWEEP START TIME 01/02. SWEEP START TIME 01/02. SWEEP FEND 12/31 DRY DATS 0 REPORT STEP 00:01. WET STEP 00:05. ROUTING STEP 00:05. ROULE_STEP 00:05.	/2000 500 /2000 /2000 /2000 /2000 /2000 /2000 /2000 /200/ /200 /200/ /200/ /200 /200 /200 /200 /200 /200 /200 /200 /200 /200 /			24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	$\begin{array}{c} 02 : 13:00\\ 02:30:00\\ 03:00:00\\ 03:15:00\\ 03:45:00\\ 03:45:00\\ 04:15:00\\ 04:15:00\\ 04:15:00\\ 04:30:00\\ 04:45:00\\ 05:00:00\\ 05:00:00\\ 05:30:00\\ 05:45:00\\ 05:00:00\\ \end{array}$	0.624 0.624 0.624 0.624 0.624 0.624 0.816 0.816 0.816 0.72 0.72 0.72 0.72
INERTIAL DAMEING PARTI NORMAL FLOW LIMITED BOTH FORCE MAIN EQUATION H-W VARIABLE STEP 0 MAX/THIALS STEP 0 MAX/THIALS 8 HEAD TOLERANCE 0 SLAT FLOW TOL 5 SLAT FLOW TOL 5 THREADS 8	11			24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	06:15:00 06:30:00 07:00:00 07:15:00 07:15:00 07:45:00 08:00:00 08:15:00 08:45:00 08:45:00 09:15:00	0.96 0.96 0.96 0.96 0.96 0.96 1.296 1.296 1.296 1.296 1.296 1.296 1.296
[EVAPORATION] ;;Data Source Parameters ;; CONSTANT 0.0 DRY_ONLY NO	3			24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	09:30:00 09:45:00 10:00:00 10:15:00 10:30:00	1.728 1.728 2.208 2.208 2.976
[R-INGAGES] ;;Name Format ;;	Interval SCF Sour 0:15 1.0 TIME 0:10 1.0 TIME	CCE ISBRIES 248CS002 ISBRIES 248CS005 ISBRIES 248CS015 ISBRIES 248CS020 ISBRIES 248CS020 ISBRIES 248CS020 ISBRIES 248CS020 ISBRIES 248CS020 ISBRIES 3CH1025 ISBRIES 3CH1025 ISBRIES 3CH1025 ISBRIES 3CH100 ISBRIES 3CH100 ISBRIES 248CS100 ISBRIES 248CS1		24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	10:45:00 11:00:00 11:35:00 11:30:00 12:10:00 12:15:00 12:35:00 12:45:00 13:15:00 13:45:00 14:15:00 14:25:00:00 15:15:00	$\begin{array}{c} 2.976\\ 4.608\\ 19.968\\ 52.992\\ 6.912\\ 3.552\\ 2.592\\ 2.016\\ 1.536\\ 1.536\\ 1.536\\ 1.536\\ 1.344\\ 1.344\\ \end{array}$
[SUBCATCHMENTS] ;;Name Rain Gage %Slope CurbLen SnowPack ;;	Outlet	Area %Imperv	Width	24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	15:30:00 15:45:00 16:00:00 16:15:00 16:30:00	1.344 1.344 1.056 1.056 1.056
S1 Rainfall 2.093 0 S10 Rainfall 1.55 0 S2 Rainfall 4.98 0 S3 Rainfall 7.62 0 S4 0	0F7 J2 0F4 0F1 0F2	1.0882 30 238.018 0.296 6.53085 1.546 1.89426 7.391 12.509 0	105.4 1690 132.493 190.345 343.225	245CS002 245CS002 245CS002 245CS002 245CS002 245CS002 245CS002 245CS002 245CS002 245CS002 245CS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	16:45:00 17:00:00 17:15:00 17:30:00 17:45:00 18:00:00 18:15:00 18:30:00 18:45:00	1.056 1.104 1.104 1.104 1.104 0.72 0.72 0.72 0.72 0.72
S.74 O Rainfall 8.69 0 Rainfall 5.76 0 Rainfall 5.78 0 Rainfall	OF3 OF5 OF6	4.98951 2.511 23.09131 0.671 17.82248 20.441	137.91 368.322 217.02	24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	19:15:00 19:30:00 19:45:00 20:00:00 20:15:00	0.576 0.576 0.576 0.816 0.816
5.44 0 [SUBAREAS] ;;Subcatchment N-Imperv PctRouted	N-Perv S-Imperv	S-Perv PctZero	RouteTo	24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	20:30:00 20:45:00 21:00:00 21:15:00 21:30:00 21:45:00	0.816 0.816 0.528 0.528 0.528 0.528
	$\begin{array}{ccccccc} 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ 0.25 & 1.57 \\ \end{array}$	$\begin{array}{ccccccc} 4 & 67 & 0 \\ 4 & 67 & 0 \\ 4 & 67 & 0 \\ 4 & 67 & 0 \\ 4 & 67 & 0 \\ 4 & 67 & 0 \\ 4 & 67 & 0 \\ 4 & 67 & 0 \\ 4 & 67 & 0 \end{array}$	OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET OUTLET	24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002 24SCS002	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	22:00:00 22:15:00 22:30:00 22:45:00 23:00:00 23:15:00 23:30:00 23:45:00 00:00:00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
LINFAITON] :Subcatchment Paraml 51 76.2 52 76.2 53 76.2 54 76.2 55 76.2 56 76.2 57 76.2 58 76.2 59 76.2	Param2 Param3 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14 13.2 4.14	Param4 Param5 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0		:Rainfall (mm/hr 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005 24SCS005) 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:15:00 00:30:00 01:00:00 01:15:00 01:30:00 01:45:00 02:00:00 02:15:00 02:30:00	0.936 0.936 0.936 0.4368 0.4368 0.4368 0.4368 0.4368 0.4368 0.8112 0.8112 0.8112
[JUNCTIONS] ;;Name Elevation ;;	MaxDepth InitDepth	SurDepth Aponded		24SCS005 24SCS005 24SCS005 24SCS005 24SCS005	01/01/2000 01/01/2000 01/01/2000 01/01/2000	02:45:00 03:00:00 03:15:00 03:30:00	0.8112 0.8112 0.8112 0.8112
[OUTFALLS] ;;Name Elevation	Type Stage Data	a Gated Rou	te To	24SCS005 24SCS005 24SCS005	01/01/2000 01/01/2000 01/01/2000	03:45:00 04:00:00 04:15:00	0.8112 1.0608 1.0608
iii 0 OP1 0 OP2 0 OP3 0 OP4 0 OF5 0 OP6 49 OP7 53.24	FREE FREE FREE FREE FREE FREE FREE FREE	NO NO NO NO NO NO NO		248CS005 248CS005 248CS005 248CS005 248CS005 248CS005 248CS005 248CS005 248CS005	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	04:30:00 04:45:00 05:00:00 05:15:00 05:30:00 05:45:00 06:00:00 06:15:00	1.0608 1.0608 0.936 0.936 0.936 1.248 1.248 1.248
[CONDUITS] ;;Name From Node OutOffset InitFlow MaxF1 ;;	To Node Low	Length Roughn	ess InOffset	24SCS005 24SCS005 24SCS005 24SCS005 24SCS005	01/01/2000 01/01/2000 01/01/2000 01/01/2000	06:45:00 07:00:00 07:15:00 07:30:00	1.248 1.248 1.248 1.248 1.248
C1 J2 0	 OF1	46.462 0.01	0	24SCS005 24SCS005 24SCS005 24SCS005	01/01/2000 01/01/2000 01/01/2000 01/01/2000	08:00:00 08:15:00 08:30:00	1.6848 1.6848 1.6848
[XSECTIONS] ;;Link Shape Barrels Culvert ;;	Geoml Ge	eom2 Geom3	Geom4	24SCS005 24SCS005 24SCS005 24SCS005 24SCS005	01/01/2000 01/01/2000 01/01/2000 01/01/2000	08:45:00 09:00:00 09:15:00 09:30:00	1.6848 1.9968 1.9968 2.2464
C1 CIRCULAR [LOSSES]	1 0 Kevit Kowa	0 Flan Gate Soon	0 1	245CS005 24SCS005 24SCS005 24SCS005 24SCS005	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	09:45:00 10:00:00 10:15:00 10:30:00	2.2464 2.8704 2.8704 3.8688 3.8688
[TIMESERIES]		seepage		24SCS005 24SCS005 24SCS005	01/01/2000 01/01/2000 01/01/2000	11:00:00 11:15:00 11:30:00	5.9904 5.9904 25.9584

[TIMESERIES]

Page 1 of 4

Page 3 of 4

3CHI010 3CHI010 3CHI010 3CHI010 3CHI010 3CHI010 3CHI010 3CHI010 3CHI010 3CHI010 3CHI010 3CHI010		01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	01:10:00 01:20:00 01:30:00 01:50:00 02:00:00 02:20:00 02:20:00 02:40:00 02:40:00 02:50:00 03:00:00		35.237 18.159 12.238 9.269 7.492 6.309 5.465 4.831 4.338 3.942 3.942 0		
; Rainfall (3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:20:00 00:30:00 00:50:00 01:00:00 01:10:00 01:20:00 01:20:00 01:20:00 02:10:00 02:10:00 02:10:00 02:30:00 00:30:00 00:20:00 00:		$\begin{array}{c} 4.358\\ 5.202\\ 6.506\\ 8.801\\ 13.954\\ 36.302\\ 144.693\\ 41.479\\ 21.2286\\ 14.308\\ 10.818\\ 8.732\\ 7.345\\ 6.356\\ 5.615\\ 5.615\\ 5.615\\ 5.615\\ 5.615\\ 5.038\\ 4.576\\ 0\end{array}$		
;Rainfall (3CH1050	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:10:00 00:20:00 00:30:00 00:50:00 01:10:00 01:20:00 01:20:00 01:50:00 02:10:00 02:20:00 02:20:00 02:30:00 02:50:00 03:00:00		$\begin{array}{c} 4.828\\ 5.766\\ 7.214\\ 9.763\\ 15.496\\ 40.401\\ 161.471\\ 46.17\\ 23.66\\ 15.896\\ 9.687\\ 8.144\\ 7.044\\ 5.583\\ 5.577\\ 4.649\\ 0\end{array}$		
;Rainfall (3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100 3CHI100	(mm/hr)	0 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:10:00 00:20:00 00:30:00 00:50:00 01:10:00 01:10:00 01:20:00 01:50:00 02:10:00 00:10:00 00:00 00:20:00 00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00		$\begin{array}{c} 5.339\\ 6.376\\ 7.977\\ 10.797\\ 17.136\\ 45.128\\ 178.107\\ 51.056\\ 26.163\\ 17.571\\ 13.277\\ 10.712\\ 9.008\\ 7.793\\ 6.174\\ 5.607\\ 5.142\\ 0\end{array}$		
<pre>; Rainfall (3CH1120</pre>	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:10:00 00:20:00 00:30:00 00:50:00 01:10:00 01:20:00 01:30:00 01:30:00 01:20:00 02:10:00 02:10:00 02:10:00 02:40:00 02:40:00 02:50:00 03:00:00		6 406801 7 6512 15 9544 15 9544 15 9544 15 9544 15 9544 15 9544 15 9544 16 2672 31.3956 21.0852 12.8544 10.8096 9.351601 8.259601 7.4088 6.170401 0		
[REPORT] ;;Reporting INPUT CONTROLS SUBCATCHMEN NODES ALL LINKS ALL	y Optio YES NO NTS ALI	ons L					
[TAGS] Subcatch Subcatch Subcatch Subcatch Subcatch Subcatch Subcatch Subcatch Node Link	S1 S10 S2 S3 S4 S5 S6 S9 J2 C1		Resident WDT WDT WDT WDT WDT WDT WDT WDT WDT	ial			
[MAP] DIMENSIONS UNITS		474269.9230 Meters	55 50	397	54.217	476642.45535	5042348.699
[COORDINATE ;;Node ;;	s]	X-Coord		Y-C	oord		
[VERTICES] ;;Link ;;		X-Coord		Y-C	oord		
[POLYGONS] ;;Subcatchm	ient	X-Coord		Y-C	oord		
[SYMBOLS] ;;Gage ;;		X-Coord		Y-C	oord		

EPA STORM WATER N	MANAGEMENT MOD	DEL - VERSION	5.2 (Buil	d 5.2.4)		
Element Count ************************************	ages 14 chments 8 8 1 ants 0 ses 0					

Name 24SCS002 24SCS005 24SCS010 24SCS025 24SCS025 24SCS050 24SCS120	Data Sour 24SCS002 24SCS005 24SCS010 24SCS025 24SCS050 24SCS120			Data Type INTENSITY INTENSITY INTENSITY INTENSITY INTENSITY	Recordi: Interva 15 min 15 min 15 min 15 min 15 min 15 min	ng 1
3CHI002 3CHI005 3CHI010 3CHI025 3CHI050 3CHI100 3CHI120 Rainfall	3CHI002 3CHI005 3CHI010 3CHI025 3CHI050 3CHI100 3CHI120 24SCS100			INTENSITY INTENSITY INTENSITY INTENSITY INTENSITY INTENSITY INTENSITY	10 min 10 min 10 min 10 min 10 min 10 min 15 min	•
**************************************	**** nary **** Are	ea Width	%Imperv	%Slope	Rain Gag	e
	1.0	105.40	30.00	2.0930	Rainfall	
510 J2	238.0	1690.00	0.30	1.5500	Rainfall	
OF4 S3	6.5	132.49 190.34	1.55 7.39	4.9800	Rainfall	
OF1 S4 OF2	12.5	343.23	0.00	9.7400	Rainfall	
S5 OF3	4.9	99 137.91	2.51	8.6900	Rainfall	
0F5 S9 OF6	17.8	217.02	20.44	5.4400	Rainfall	
*********** Node Summary *****		-		Maria	Deeded	
Name	Туре	1	Elev.	Depth	Area	Inflow
J2 OF1 OF2	JUNCTION OUTFALL OUTFALL		45.78 0.00 0.00	1.00 1.00 0.00	0.0 0.0 0.0	
OF3 OF4 OF5	OUTFALL OUTFALL OUTFALL		0.00 0.00 0.00	0.00 0.00 0.00	0.0 0.0 0.0	
OF6 OF7	OUTFALL OUTFALL		49.00 53.24	0.00	0.0	
**************************************	From Node	To Node	1	уре	Len	gth
C1 575.8969 0.0100	J2	OF1	c	CONDUIT	4	6.5
**************************************	**** nmary ****					
Full Conduit Flow	Shape	Pull Depth	Full Area	Rad.	Max. Width	NO. OI Barrels
C1 74.81	CIRCULAR	1.00	0.79	0.25	1.00	1
Analysis Options Flow Units Process Models: Result Notes Brown and States Groundwater Flow Routing Ponding Allowed Water Quality Flow Routing Method Starting Date Entrage Method Starting Date Entrage Method Starting Date Entrage Method Starting Date Entrage Method Starting Eate Entrage Method Starting Eate Routing Time Step Routing Time Step Routing Time Step Number of Thread Head Tolerance	CMS F	S S S S S S S S S S S S S S	0:00 0:00			
Runoff Quantity (************************************	********** Continuity *********	Volume hectare-m	Dep 103.2	200		
Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error	ion s (%)	28.854 2.718 0.010 -0.026	94.3 8.8 0.0	311 384 333		

RDII Inflow External Inflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Finel Stored Volume	0.000 0.000 2.717 0.000 0.000 0.000 0.000 0.000	0.000 0.000 27.174 0.000 0.000 0.000 0.000 0.000
Continuity Error (%)	-0.000	0.000

**** Time-Step Critical Elements Link Cl (37.56%)

Highest Flow Instability Indexes All links are stable.

Routing Time Step Summary			

Minimum Time Step		0.94	sec
Average Time Step	:	3.67	sec
Maximum Time Step		5.00	sec
% of Time in Steady State	-	0.00	
Average Iterations per Step	:	2.00	
% of Steps Not Converging	:	0.00	
Time Step Frequencies	:		
5.000 - 3.155 sec	:	64.30	de
3.155 - 1.991 sec	:	4.09	de
1.991 - 1.256 sec	:	10.16	8
1.256 - 0.792 sec	:	21.44	8
0.792 - 0.500 sec	:	0.00	db

**** Subcatchment Runoff Summary

Perv	Total	Total Total Peak	Total Runoff	Total	Total	Imperv
Runoff	Bunoff	Precip Bunoff Bunoff	Runon	Evap	Infil	Runoff
Subcat	chment	mm	mm	mm	mm	mm
mm	mm 10^	6 ltr CMS				
S1	46 37	103.20	0.00	0.00	56.52	30.53
\$10	1010,	103.20	0.00	0.00	97.70	0.30
5.20	5.50	13.09 2.33	0.053	0 00	87 52	1 57
14.14	15.71	1.03 0.30	0.152	0.00		
22 48	29 99	103.20	0.00	0.00	73.33	7.51
\$4	20.00	103.20	0.00	0.00	85.08	0.00
18.21	18.21	2.28 0.91	0.176	0.00	83 08	2 55
17.61	20.16	1.01 0.39	0.195	0.00	00.00	2.00
S6	12 04	103.20	0.00	0.00	89.40	0.68
±3.15 S9	13.04	103.20	0.00	0.00	72.00	20.77
10.14	30.91	5.51 1.63	0.300			

. Node Depth Summary

-------- Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Node Type Meters Meters days hr:min Heters
 J2
 JUNCTION
 0.05
 0.16
 45.94
 0
 12:00

 0.16
 OTI
 OUTFALL
 0.04
 0.12
 0.12
 0
 12:00

 0F1
 OUTFALL
 0.04
 0.12
 0.12
 0
 12:00

 0F2
 OUTFALL
 0.00
 0.00
 0.00
 0
 00:00

 0F3
 OUTFALL
 0.00
 0.00
 0.00
 0
 00:00

 0F4
 OUTFALL
 0.00
 0.00
 0.00
 0
 00:00

 0.00
 OUTFALL
 0.00
 0.00
 0.00
 0
 00:00

 0.00
 OUTFALL
 0.00
 0.00
 0.00
 0
 0:00

 0.00
 OUTFALL
 0.00
 0.00
 49:00
 0
 0:00

 0.00
 OUTFALL
 0.00
 0.00
 53:24
 0
 0:00
 0.00 0F3 0.00 0F5 0.00 0F5 0.00 0F6 0.00 0F7 0.00 OUTFALL 0.00 0.00 53.24 0 00:00

***** Node Inflow Summary

m - + - 1			Maximum	Maximum			Lateral	
TOLAL	FIOW		Lateral	Total	Time	of Max	Inflow	
Inflow	Balance		Inflow	Inflow	0001	rrence	Volume	
Volume	Error		111110W	1111100		LICHCC	vorume	
Node 10^6 ltr	Percent	Туре	CMS	CMS	days	hr:min	10^6 ltr	
J2	-0.001	JUNCTION	2.332	2.332	0	12:00	13.1	
OF1	-0.001	OUTFALL	0.349	2.682	0	12:00	0.568	
13.7 OF2	0.000	OUTENT	0 910	0 910	0	12.00	2 28	
2.28	0.000	OUTTABL	0.910	0.910	0	12.00	2.20	
OF3	0.000	OUTFALL	0.387	0.387	0	12:00	1.01	
0F4	0.000	OUTFALL	0.305	0.305	0	12:00	1.03	
1.03	0.000	OUTENT	0 880	0 880	0	12.00	3 1 9	
3.19	0.000	OUTTABL	0.000	0.000	0	12.00	5.15	
OF6	0.000	OUTFALL	1.629	1.629	0	12:00	5.51	
OF7	0.000	OUTFALL	0.208	0.208	0	12:00	0.504	
0.504	0.000							

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

Outfall Node	Flow	Avg	Max	Total						
	Freq	Flow	Flow	Volume						
	Pcnt	CMS	CMS	10^6 ltr						
OF1	96.90	0.514	2.682	13.661						
OF2	30.16	0.309	0.910	2.277						
OF3	96.86	0.040	0.387	1.006						
OF4	96.84	0.041	0.305	1.026						
OF5	96.89	0.129	0.880	3.195						
OF6	96.89	0.161	1.629	5.505						
OF7	96.79	0.015	0.208	0.504						
Syscem	07.00	1.200	0.990	27.174						

		Maximum Flow	Time of Max Occurrence	Maximum Veloc	Max/ Full	Max/ Full
Link	Type	CMS	days hr:min	m/sec	Flow	Depth
C1	CONDUIT	2.334	0 12:00	35.11	0.03	0.14

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s
Inlet	/Actual		Up	Down	Sub	Sup	Up	Down	Norm
Conduit Ctrl	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd
C1 0.00	1.00	0.04	0.00	0.00	0.00	0.95	0.00	0.00	0.00

Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Mon Nov 20 16:48:21 2023 Analysis ended on: Mon Nov 20 16:48:21 2023 Total elapsed time: < 1 sec

ROCKLAND WEST SECONDARY STUDY Rockland, ON

J.L. Richards copyright and	DESIGN:	ID	JLR NO.: 31097-000
oroject of these inal project	DRAWN:	ID	
permitted or rization of JLR	CHECKED:	BP	TIOORE 2

November 2023

[TITLE] ;;Project Title/ [OPTIONS] ;;Option FLOW UNITS INFITRATION FLOW ROUTING LINK OFFERS MID OF PERS MID OF PERS START TIME START DATE START TATE START STEP DET STEP DET STEP DET STEP	Value CMS HORTON DYNRAV ELEVAT NO TE 01/01/ TE 01/01/ TE 01/01/ TE 01/01/ TE 01/01/ 00:005 01/01	7 72 700N 72000 72000 00 72000 00 00					\$12 \$14 \$15 \$17 \$18 \$21 \$21 \$22 \$22 \$23 \$23 \$32 \$42 \$43 \$5 \$6 \$6 \$7 \$8 \$9 [JUNCT] \$7, Name ;1- 32 \$2 \$2 \$4 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3	ONS]	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-
ROUTING STEP RULE_STEP	1 00:00:	00					[OUTFAI ;;Name	LS]	Elevatio	n Type	Stage Da	ta Gat	ed Route	То
INERTIAL DAMPINO NORMAL FLOW LIMI FORCE MAIN EQUAY VARIABLE STEP LENGTHENING STEI MIN SURFAREA MAXTRIALS HEAD TOLERANCE	PARTIA TED BOTH TION H-W 0.75 0 0 8 0.0015	al.					0F1 0F2 0F3 0F4 0F5 0F6 (STORAG	:Е]	43.921 53.617 53.605 50.646 50.624 51.352	FREE FREE FREE FREE FREE FREE FREE		NO NO NO NO NO		
SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP	5 5 0.5						;;Name SurDept ;;	h Fevap	Elev. Psi	MaxDepth Ksat	InitDepth IMD 	Shape	Curve Name.	/Params
THREADS	18						st_sul		52.799	0.5	0	FUNCTIONAL	0	D
[EVAPORATION] ;;Data Source	Parameters	3					1500 ST_SU2	0	0 52.985	0.5	0	FUNCTIONAL	0	D
CONSTANT DBY ONLY	0.0 NO						SUU St_SU3 3500	0	54.024	0.5	0	FUNCTIONAL	0	D
[RAINGAGES]							St_SU4 220	0	52.829 0	0.5	0	FUNCTIONAL	0	D
;;Name	Format	Interval S	SCF Sou	rce	00100		St_SU5 302.129	0	54.434	0.5	0	FUNCTIONAL	0	D
Rainfall	INTENSITY	0:15	L.O TIM	ESERIES 24S	CSIOO		St_SU6 347.843	0	55.485 0	0.5	0	FUNCTIONAL	0	n
;;Name %Slope CurbLer	Rain Gage SnowPack	Out	let	Area	%Imperv	Width	662.571 St SU8	0	0 59	0.5	0	FUNCTIONAL	0	D
;;							472.933 St_SU9	0	0 58	0.5	0	FUNCTIONAL	0	D
S1 0	Rainfall	St_	SU2	3.4858	92.857	784.305 2	2 154.071 STM-1	. 0	0 52.62	3.301	0	FUNCTIONAL	0	D
1.55 0	Rainfall	J2	9113	218.3856	0.296	1690	1.13 STM-10	0	52.49	3.495	0	FUNCTIONAL	0	D
0 S12	Rainfall	St		1.1894	64.3	267.618 2	STM-12 1.13	0	52.729	2.832	0	FUNCTIONAL	0	D
0 S14	Rainfall	St	SU6	2.4349	92.857	547.852 2	STM-13 1.13	0	53.227	3.079	0	FUNCTIONAL	0	D
0 S15	Rainfall	SWI	- 4F-3	0.5004	28.571	112.59 3	STM-14 1.13	0	53.825	3.691	0	FUNCTIONAL	0	D
0 S17	Rainfall	SWI	4F-4	0.2195	28.571	49.388 3	STM-15 3 1.13 STM-16	0	54.443 0 54.966	4.132	0	FUNCTIONAL	0	n
S18 0	Rainfall	St	SU7	4.6318	92.857	1042.155 2	2 1.13 STM-10	0	0 48.412	3.921	0	FUNCTIONAL	0	D
S19 0	Rainfall	St	SU4	1.527	78.571	343.575 2	2 1.13 STM-2A	0	0 49.223	4.076	0	FUNCTIONAL	0	- D
S2 4.98 0	Rainfall	OF4	1	0.1218	1.546	132.493	1.13 STM-3	0	0 53.987	2.437	0	FUNCTIONAL	0	D
S2_1 4.98 0	Rainfall	STN	4-7	3.3857	1.546	132.493	1.13 STM-4	0	0 50.216	3.269	0	FUNCTIONAL	0	D
521 0 822	Rainfall	St_	SU1	5.9UZ	92.857	1552.95 2	1.13 STM-5	0	49.4	3.929	0	FUNCTIONAL	0	D
0 S23	Rainfall	St		2.8376	64.3	638.466 2	STM-6	0	49.821	2.726	0	FUNCTIONAL	0	D
0 S3	Rainfall	OFI		0.7641	7.391	190.345	STM-7 1.13	0	50.824 0	3.7	0	FUNCTIONAL	0	D
7.62 0 S4_2	Rainfall	STN	4-15	8.4446	0	325.221	STM-8 1.13	0	51.789 0	3.145	0	FUNCTIONAL	0	D
9.705 0 S4_3	Rainfall	OF2	2	0.290336	0	11.182	STM-9 1.13	0	52.097	2.892	0	FUNCTIONAL	0	D
9.705 0 S5 8.69 0	Rainfall	ST	4-14	1.2699	2.511	137.91	1.13 STMH-3	0	40.300	2 921	0	FUNCTIONAL	0	n
S6 5.78 0	Rainfall	OFS	5	23.0913	0.671	368.322	1.13 SWMF-1	0	0 48.255	1.5	0	PYRAMIDAL	63	63 3
S7 0	Rainfall	SWI	4F-1	0.7517	28.571	169.133 3	0 SWMF-2	0	49.24	1.5	0	PYRAMIDAL	93	93 3
S8 0	Rainfall	SWI	4F-2	0.6072	28.571	136.62 3	SWMF-3	0	51.5	1.5	0	PYRAMIDAL	53	53 3
5.44 0	Kainiaii	511	4-13	4.5245	20.441	217.02	SWMF-4	0	54.496	1.5	0	PYRAMIDAL	8	в 3
[SUBAREAS] ;;Subcatchment PctRouted ;;	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	RouteTo	CONDUI ;;Name OutOffs ;;	TS] et Init	From Nod Flow Max	e T Flow	o Node	Length	Roughnes:	s InOffset
20 S10	0.013	0.25	1.57	4.0/	0	UILLI EL	C1 /8 255	0	STMH-1	s	WMF-1	31.803	0.013	48.366
śī1 20	0.013	0.25	1.57	4.67	ō	PERVIOUS	JS C10 52.097	0	STM-10 0	s	TM-9	112.412	0.013	52.49
S12 20	0.013	0.25	1.57	4.67	0	PERVIOUS	JS C11 53.377	0	STM-14 0	S	TM-13	127.964	0.013	53.825
S14 20	0.013	0.25	1.57	4.67	0	PERVIOUS	JS C12 53.825	0	STM-15 0	S	TM-14	176.443	0.013	54.443
100 817	0.013	0.25	1.57	4.67	0	PERVIOUS	52.879	0	STM-13 0 STM-12	3	TM-12	99.383 180 704	0.013	52 729
100 S18	0.013	0.25	1.57	4.67	0	PERVIOUS	52.097 JS C15	0	STM-16	s	TM-15	120.875	0.013	55.166
20 S19	0.013	0.25	1.57	4.67	0	PERVIOUS	54.743 JS C2	0	STM-2	s	TMH-1	13.136	0.013	48.412
20 \$2	0.013	0.25	1.57	4.67	0	OUTLET	48.366 C3	0	J2 .	o	F1	35.05	0.035	45.521
S2 1 S2T	0.013	0.25	1.57	4.67	0	PERVIOUS	43.921 JS C3_1	0	STMH-3	s	TM-2A	188.688	0.013	50.033
\$22 20	0.013	0.25	1.57	4.67	0	PERVIOUS	49.3/3 IS C3_2 48 ⁻⁵⁶²	0	STM-2A	s	TM-2	188.741	0.013	49.223
\$23 20	0.013	0.25	1.57	4.67	0	PERVIOUS	JS C4 50.183	0	STM-4	S	TMH-3	9.357	0.013	50.216
S3 S4 2	0.013 0.013	0.25	1.57 1.57	4.67 4.67	0	OUTLET OUTLET	C5 49.24	0	STM-5 0	S	WMF-2	45.799	0.013	49.4
\$4_3 \$5_	0.013	0.25	1.57	4.67	0	OUTLET OUTLET	C6 49.4	0	STM-6	S	TM-5	120.279	0.013	49.821
S6 S7	0.013 0.013	0.25	1.57 1.57	4.67 4.67	0	OUTLET PERVIOUS	JS 49.971	0	STM-7	S -	TM-6	243.631	0.013	50.824
S8 100	0.013	0.25	1.57	4.67	0	PERVIOUS	JS 51.5	0	SIM-8 0 STM-9	S	wiar = 3 TM=8	d∠.465 88 ∩8	0.013	52 097
ŝ9	0.013	0.25	1.57	4.67	0	OUTLET	51.789	0	0	5	~	50.00	0.010	02.007
[INFILTRATION] ;;Subcatchment	Paraml	Param2	Param3	Param4	Param5		[ORIFIC ;;Name	ES]	From Nod	е Т	o Node	Type	Offset	Qcoeff
;; S1 S10	76.2	13.2	4.14	7	0		Gated ;;	CloseT	1me 					
S10 S11	76.2	13.2	4.14 4.14	7	0									

November 2023

OR1		SWMF-1		J2		SIDE	4	18.255	C	.6
NO OR2	0	SWMF-2		J2		SIDE	4	19.24	C	.6
OR3	0	SWMF-3		OF6		SIDE	5	51.5	C	.6
OR4	0	SWMF-4		OF3		SIDE	5	64.496	C	.6
IWEIRSI	0									
;;Name Gated	EndCon	From Node EndCoeff	Surch	To Node harge Ro	adWidth	Type RoadSurf	Coe	CrestHi eff. Ci	t ζ urve	coeff
;;										
 W3		St_SU4		SWMF-2		TRANSVER	SE 5	53.079	1	.84
NO W5	0	0 St_SU5	NO	SWMF-3		TRANSVER	SE 5	684.684	1	.84
NO W6	0	0 St_SU8	NO	SWMF-4		TRANSVER	SE 5	9.25	1	.84
NO W7	0	st_su9	NO	SWMF-4		TRANSVER	SE 5	8.25	1	.84
LOUTE ETC.	0	0	NO							
;;Name OTable/Oc	oeff	From Node Oexpon	Gated	To Node		Offset	Тур	e		
;;										
OL1 OL1		St_SU1	NO	STM-2A		52.799	TAE	BULAR/I	HEAD	
OL2 OL2		ST_SU2	NO	STM-4		52.985	TAE	BULAR/I	HEAD	
OL3 OL3		St_SU3	NO	STM-7		54.024	TAE	BULAR/I	HEAD	
OL4 OL4		St_SU4	NO	STM-5		52.829	TAE	BULAR/I	HEAD	
OL5 OL5		St_SU5	NO	STM-8		54.434	TAE	BULAR/I	HEAD	
OL6		SL_SU0	NO	STM-10		55.465	TAE	ULAR/I	HEAD	
OL7 OL7		SL_SU/ St_SU/	NO	STM-15		59.5	TAE	NIT ND / I	NEAD	
OL8 01.9		St_500	NO	STM-16		58	TAP	NILAR/I	DEPTH	
OL9		00_000	NO	0111 10		50		, o 2111() 1		
[XSECTION ;;Link Barrels	IS] Culve:	Shape	Geon	11	Geo	m2 G	eom3	Ge	eom4	
;;										
C1 C10		CIRCULAR	1.2	j.	0	0		0		1
C12 C12		CIRCULAR	1.05	5	0	0		0		1
C14 C15		CIRCULAR	1.35	5	0	0		0		1
C2 C3		CIRCULAR	1.2		Ŭ 3	Ŭ 3		Ŭ 3		1
C3_1 C3_2		CIRCULAR CIRCULAR	0.9	ō	Ö	õ		Õ		1
C4 C5		CIRCULAR CIRCULAR	0.75	5	0	0		0		1
C6 C7		CIRCULAR CIRCULAR	1.5 1.35	5	0	0		0		1
C8 C9		CIRCULAR CIRCULAR	1.35	5	0	0		0		1
OR1 OR2		CIRCULAR	0.16		0	0		0		
OR3 OR4		RECT CLOSEI CIRCULAR	0.52	25	1.0	5 0		0		
W3 W5		RECT_OPEN RECT_OPEN	0.25	5	5 10	0		0		
W6 W7		RECT_OPEN RECT_OPEN	0.25	5	5 10	0		0		
[LOSSES]		Kentry	Kevit	Kav	ч .	Flan Gate	Seer	are		
::			1101110				- Occp	rage		
c1		0	0.5	0	1	NO	0		-	
C1 C10 C11		0 0 0	0.5 1.064 1.319	0 0 0	1	NO NO NO	0 0 0		-	
C1 C10 C11 C12 C13		0 0 0 0 0 0	0.5 1.064 1.319 0.032 0.02	0 0 0 0 0	1	NO NO NO NO NO	0 0 0 0 0		_	
C1 C10 C11 C12 C13 C14 C15		0 0 0 0 0 0 0 0 0 0	0.5 1.064 1.319 0.032 0.02 0.02 0.02 1.319			NO NO NO NO NO NO			_	
C1 C10 C11 C12 C13 C14 C15 C2 C3_2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 1.064 1.319 0.032 0.02 0.02 1.319 0.21 0.63			NO NO NO NO NO NO NO			_	
C1 C10 C11 C12 C13 C14 C15 C2 C3_2 C3_2 C4_ C5 C4_ C5			0.5 1.064 1.319 0.032 0.02 1.319 0.21 0.63 0.02 0.5 0.5			NO NO NO NO NO NO NO NO	000000000000000000000000000000000000000		_	
C1 C10 C11 C12 C13 C14 C15 C2 C3_2 C4_ C5 C6 C7 C8			0.5 1.064 1.319 0.032 0.02 1.319 0.21 0.63 0.02 0.5 0.391 0.032			NO NO NO NO NO NO NO NO NO NO	000000000000000000000000000000000000000		_	
C1 C10 C11 C12 C13 C14 C15 C5 C6 C7 C8 C9			$\begin{array}{c} 0.5\\ 1.064\\ 1.319\\ 0.032\\ 0.02\\ 0.02\\ 1.319\\ 0.21\\ 0.63\\ 0.02\\ 0.5\\ 0.391\\ 0.032\\ 0.5\\ 0.051\\ \end{array}$			NO NO NO NO NO NO NO NO NO NO NO NO			_	
C1 C10 C11 C12 C13 C14 C15 C2 C3 C4 C5 C6 C7 C8 C9 [CURVES] ::Name		 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 1.064 1.319 0.02 0.02 1.319 0.21 0.63 0.02 0.5 0.0391 0.032 0.5 0.051 X-Valu		alue	NO NO NO NO NO NO NO NO NO NO NO			_	
C1 C10 C11 C12 C13 C14 C15 C2 C3 C4 C5 C6 C7 C8 C9 [CURVES] ;;Name ;;capture	rate 1:5	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 1.064 1.319 0.032 0.02 1.319 0.21 0.63 0.02 0.5 0.5 0.5 0.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue	NO NO NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of 3	- 10 mir	1 as
<pre>c1 C10 C11 C12 C13 C14 C15 C2 C3 C4 C5 C5 C6 C7 C8 C9 C9 C9 C1 CURVES] ;;Name ;;Capture per Clare OL1</pre>	rate 1:5	Type 	0.5 1.064 1.319 0.02 0.02 1.319 0.21 0.63 0.02 0.5 0.391 0.03 0.05 0.051 X-Valu calula 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration.	NO NO NO NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of :	- 10 mir	1 85
ci cilo ci	rate 1: nce Roc)	Type 	0.5 1.064 1.319 0.02 0.02 1.319 0.21 0.63 0.5 0.391 0.031 X-Valu x-Valu a Guide 0 0.031	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99	NO NO NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c of :	- 10 mir	ì ās
<pre>C1 C10 C11 C12 C12 C12 C13 C14 C15 C2 C3 C2 C4 C6 C7 C6 C7 C8 C9 C0 C0 C8 C9 C0 C0 C8 C9 C0 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12</pre>	rate 1:: nce Roc)	Type year flow land besign Rating	Control Contro	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09	NO NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c of :	- 10 mir	1 85
c1 c10 c11 c12 c12 c13 c14 c15 c2 c3 c4 c5 c6 c7 c8 c9 [CURVES] ;;Name per Clare oL1 oL1 oL1 oL1 ;Capture per Clare oL1 oL1 ;Capture per Clare oL1 oL1 oL1 ;Capture per Clare oL1 oL1 oL1 oL1 oL1 oL1 oL1 oL1	rate 1: nce Roci rate 1: nce Roci	Type 	Control Contro	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 g ration.	NO NO NO NO NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cc of :	- 10 mir 10 mir	i as i as
ci C10 C11 C12 C12 C13 C14 C15 C14 C15 C2 C2 C2 C3 C3 C7 C3 C6 C6 C7 C3 C7 C6 C7 C6 C7 C7 C3 C9 C12 C12 C12 C12 C12 C12 C12 C12	rate 1: nce Rocl nce Rocl	Type 	0.5 1.064 1.319 0.02 0.02 1.319 0.02 0.02 1.319 0.02 0.5 0.02 0.5 0.051 X-Valu calula 0.001 0.35 0.051	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 g ration. 58	NO NO NO NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of : C of :	- 10 mir 10 mir	1 as 1 as
ci C10 C11 C12 C12 C13 C14 C15 C2 C2 C2 C2 C3 C3 C7 C3 C7 C3 C7 C3 C7 C6 C7 C6 C7 C7 C3 C9 C12 C12 C12 C12 C12 C12 C12 C12	rate 1: ence Roci rate 1: nce Roci	Type 	0.5 1.064 1.319 0.02 0.02 1.319 0.21 0.63 0.02 0.5 0.051 X-Valu calula n Guide 0 0.05 0.051 Calula Guide 0 0.05 0.05 0.051 0.551 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 09 g ration. 58 68	NO NO NO NO NO NO NO NO NO NO NO NO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of :	- 10 mir 10 mir	1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1: nce Roci nce Roci rate 1: rate 1:	Type 	0.5 1.064 1.319 0.032 0.02 1.319 0.21 0.63 0.02 0.5 0.032 0.5 0.051 X-Valu calula 0.05 0.051 Calula Guide 0 0.05 0.35 0.051 Calula 0.05 0.051 Caluda 0.05 0.051 Caluda 0.05 0.051 Caluda 0.05 0.051 Caluda 0.05 0.051 Caluda 0.05 0.051 Caluda 0.05 0.051 Caluda 0.55 Caluda 0.55	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 g ration. 58 68 68 68	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	°c of : °c of :	- 10 mir 10 mir	1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1:1 nce Roci nce Roci rate 1:1 nce Roci	 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 1.064 0.05 0.02 0.02 0.02 0.02 0.02 0.032 0.05 0.032 0.05 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.021 0.021 0.032 0.051 0.032 0.021 0.032 0.051 0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 g ration. 58 68 68 68 7 ration.	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of :	- 10 mir 10 mir	1 as 1 as
<pre>c1 c10 c11 c12 c12 c13 c13 c2 c2 c3 c2 c5 c6 c6 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c7 c6 c7 c6 c7 c6 c7 c6 c7 c7 c6 c7 c7 c6 c7 c7 c6 c7 c6 c7 c6 c7 c6 c7 c6 c7 c7 c6 c7 c7 c6 c7 c6 c7 c6 c7 c6 c7 c7 c6 c7 c7 c6 c7 c7 c6 c7 c7 c7 c6 c7 c7 c6 c7 c7 c6 c7 c7 c7 c7 c6 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7 c7</pre>	rate 1: nce Roci nce Roci rate 1: nce Roci	Type Type Type Type Type Type Type Type		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 09 g ration. 58 68 68 68 68 68 68 68 68 68 68 68 68 68	NO NO NO NO NO NO NO NO NO NO NO NO NO Al method	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of : C of :	- 10 mir 10 mir	1 as 1 as
<pre>c1 c10 c11 c12 c12 c13 c13 c14 c15 c15 c15 c15 c16 c17 c17 c17 c17 c17 c17 c17 c17 c17 c17</pre>	rate 1: nce Rock rate 1: nce Rock	Type 		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 09 g ration. 58 68 68 g ration. 82 92 92 92 92 92 92 92 92 92 92 92 92 92	NO NO NO NO NO NO NO NO NO NO NO NO NO Al method al method	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of : C of :	- 10 mir 10 mir	1 as 1 as
<pre>ci cl0 cl1 cl1 cl2 cl2 cl2 cl2 cl3 cl3 cl3 cl3 cl3 cl3 cl3 cl3 cl3 cl3</pre>	rate 1: ence Roci rate 1: nnce Roci rate 1: nnce Roci	Type 	 1.064 0.054 0.032 0.021 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.5 0.		alue g ration. 99 09 g ration. 58 68 68 g ration. 82 92 92 92 92 92 g ration.	NO NO NO NO NO NO NO NO NO Al method al method	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C of : C of : C of :	- 10 mir 10 mir 15 mir	1 as 1 as 1 as
<pre>ci cl0 cl1 cl1 cl2 cl2 cl2 cl2 cl3 cl3 cl3 cl3 cl3 cl3 cl3 cl3 cl3 cl3</pre>	rate 1: nce Roci rate 1: nce Roci rate 1: nce Roci	Type year flow -year flow	 1.064 1.064 0.054 1.1319 0.002 0.02 0.02 0.21 0.02 0.03 0.02 0.03 0.001 0.03 0.001 0.03 0.001 0.05 0.001 0.03 0.001 0.03 0.001 0.03 0.001 0.03 0.002 0.03 0.001 0.03 0.002 0.03 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.003 0.003 0.035 0.003 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 g ration. 58 68 68 68 68 92 92 92 92 92 92 92 92 92 92 92 92 92	NO NO NO NO NO NO NO NO NO NO Al method al method	and T and T	"c of : "c of : "c of :	- 10 mir 10 mir 15 mir	1 as 1 as 1 as
<pre>ci cl0 cl1 cl1 cl2 cl2 cl2 cl2 cl3 cl4 cl3 cl4 cl3 cl4 cl4 cl4 cl4 cl4 cl4 cl4 cl4 cl4 cl4</pre>	rate 1: nce Rock rate 1: nce Rock rate 1: nce Rock	Type 	 1.1.064 1.054 1.032 0.02 0.02 1.319 0.02 0.02 0.02 0.02 0.02 0.032 0.35 0.55 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 09 09 09 09 09 09 09 09 09 09 09	NO NO NO NO NO NO NO NO NO Al method al method	and T and T	"c of : "c of :	- 10 mir 10 mir 15 mir	1 as 1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1: rate 1: rate 1: rate 1: rate 1: rate 1: rate 1: rate 1:		 1.1.064 1.054 1.032 0.02 0.02 1.319 0.63 0.02 1.319 0.63 0.02 0.332 0.031 0.031 0.031 0.035 0.051 0.035 0.051 0.035 0.051 0.035 0.05 calula 6.Guide 0 0.05 calula 6.Guide 0 0.05 calula 6.Guide 0 0.05 calula 6.Guide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0.5 calula 6.Cuide 0 0 0 1.5 calula 6.Cuide 0 0 1.5 calula 6.Cuide 0 0 0 1.5 calula 6.Cuide 0 0 0 0 0 0 0 0 0 0 0 0 0	ue Y-V 0 0	alue g ration. 99 09 09 g ration. 58 68 68 68 68 68 7 92 92 92 92 92 92 92 7 4 100. 66 76 7 66 76 7 7	NO NO WO WO NO NO NO NO Al method al method al method	and T and T and T	Coof: Coof: Coof:	- 10 mir 10 mir 15 mir 15 mir	1 as 1 as 1 as
<pre>ci ci cii cii cii cii cii cii cii cii c</pre>	rate 1: ncc Roci rate 1: ncc Roci rate 1: ncc Roci rate 1: ncc Roci	 0 0 0 0 0 0 0 0 0 0 0 0 0	 1.1.064 1.054 1.032 0.02 0.02 1.319 0.63 0.02 1.319 0.63 0.02 0.35 0.051 0.035 0.051 0.035 0.05 0.051 0.042 0.035 0.05 0.	0 0 0 0	alue g ration. 99 09 09 g ration. 58 68 68 68 70 76 76 76 76 76	NO NO NO NO NO NO NO NO al method al method al method	and T and T and T	Cof: Cof: Cof: Cof:	- 10 mir 10 mir 15 mir	1 as 1 as 1 as 1 as
<pre>ci ci cii cii cii cii cii cii cii cii c</pre>	rate 1: nce Roci rate 1: nce Roci rate 1: nce Roci rate 1: nce Roci	 0 0 0 0 0 0 0 0 0 0 0 0 0	 1.1.064 1.054 1.032 0.02 0.02 1.319 0.63 0.02 1.319 0.63 0.02 0.35 0.051 0.035 0.051 0.035 0.051 0.035 0.051 0.035 0.051 0.035 0.051 0.035 0.05 0.055	u 0 0 0	alue g ration. 99 09 09 g ration. 58 68 68 77 76 77 66 77 68 78	NO NO NO NO NO NO NO NO Al method al method al method	and T and T and T	Coof: Coof: Coof:	- 10 mir 10 mir 15 mir	1 as 1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1: ncc Roci rate 1: ncc Roci rate 1: ncc Roci rate 1: ncc Roci	 0 0 0 0 0 0 0 0 0 0 0 0 0	 1.054 1.054 1.054 1.032 0.02 0.02 1.319 0.63 0.02 1.319 0.63 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.032 0.032 0.032 0.032 0.032 0.035 0.05 1.64 0.032 0.035 0.05 0.05 1.64 0.032 0.05 0.001 0.5 0.001 0.05 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.05 0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 09 g ration. 58 68 68 79 92 g ration. 66 76 77 69 78 97 82 92 92 92 92 92 92 92 92 92 9	NO NO NO NO NO NO NO NO NO NO NO NO NO N	and I and I and I	C of : C of : C of :	- 10 mir 10 mir 15 mir 15 mir	1 as 1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1: nce Roci rate 1: nce Roci rate 1: nce Roci rate 1: nce Roci	 0 0 0 0 0 0 0 0 0 0 0 0 0	 	0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 g ration. 58 68 68 92 92 92 92 92 92 92 92 92 97 76 99 97 76 99 97 76 97 77 78 78 78 78 78 78 78 77 78 78	NO NO NO NO NO NO NO NO NO NO NO NO NO N	and I and I and I and I	c of : c of : c of : c of : c of : c of :	- 10 mir 10 mir 15 mir 15 mir 10 mir	1 as 1 as 1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1: mcc Roci rate 1: mcc Roci rate 1: mcc Roci rate 1: mcc Roci	 0 0 0 0 0 0 0 0 0 0 0 0 0	 	0 0 0 0 0 0 0 0 0 0 0 0 0 0	alue g ration. 99 09 09 19 10 10 10 10 10 10 10 10 10 10	NO NO NO NO NO NO NO NO NO NO NO NO NO N	and T and T and T	c of : c of : c of : c of :	- 10 mir 10 mir 15 mir 15 mir	1 as 1 as 1 as 1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1: mcc Roci rate 1: mcc Roci rate 1: mcc Roci rate 1: mcc Roci	Type 	 	0 0 0 0	alue g ration. 99 09 09 g ration. 58 68 68 92 92 92 92 92 92 92 92 92 92	NO NO NO NO NO NO NO NO NO NO NO NO NO N	and T and T and T	c of : c of : c of : c of :	- 10 mir 10 mir 15 mir 15 mir	1 as 1 as 1 as 1 as
<pre>ci ci cii cii cii cii cii cii cii cii c</pre>	rate 1: mce Roci rate 1: mce Roci rate 1: nce Roci rate 1: rate 1: rate 1: rate 1: rate 1:	Type 	 	0 0 0 0	alue g ration. 99 09 09 g ration. 58 68 68 92 92 g ration. 66 76 76 77 8 78 78 78 78 78 79 99 99 9 g ration.	NO NO NO NO NO NO NO NO NO NO NO NO NO N	and T and T and T and T	re of : re of : re of : re of : re of :	- 10 mir 10 mir 15 mir 15 mir 10 mir	1 as 1 as 1 as 1 as
<pre>ci cil cil cil cil cil cil cil cil cil c</pre>	rate 1: mcce Rock rate 1: mcce Rock rate 1: rate 1: mcce Rock rate 1: mcce Rock rate 1: mcce Rock	Type Type	 	0 0 0 0	alue g ration. 99 09 09 09 g ration. 66 82 92 92 g ration. 66 76 76 77 8 78 78 78 78 78 79 99 99 99 91 ration.	NO NO NO NO NO NO NO NO NO NO NO NO NO N	and T and T and T and T	Coof: Coof: Coof: Coof: Coof:	- 10 mir 10 mir 15 mir 15 mir 10 mir	1 as 1 as 1 as 1 as

Page 3 of 5

3CHI005 3CHI005 3CHI005 3CHI005 3CHI005 3CHI005 3CHI005	01, 01, 01, 01, 01, 01, 01,	/01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000	02:00:00 02:10:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	5.462 4.733 4.186 3.76 3.418 3.137 0
;Rainfall 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010	(mm/hr) 01, 01, 01, 01, 01, 01, 01, 01, 01, 01,	/01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000	00:00:00 00:10:00 00:30:00 00:50:00 01:00:00 01:00:00 01:00:00 01:00:00 01:20:00 01:30:00 01:50:00 02:00:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	$\begin{array}{c} 3.755\\ 4.478\\ 5.593\\ 7.551\\ 11.936\\ 30.856\\ 122.142\\ 35.237\\ 12.238\\ 9.269\\ 7.492\\ 6.309\\ 5.465\\ 4.831\\ 4.338\\ 3.942\\ 3.942\\ 3.617\\ 0\end{array}$
;Rainfall 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025	(mm/hr) 01 01 01 01 01 01 01 01 01 01 01 01 01	/01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000	00:00:00 00:10:00 00:30:00 00:50:00 01:00:00 01:00:00 01:00:00 01:00:00 01:30:00 01:50:00 02:00:00 02:20:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	$\begin{array}{c} 4 & 358 \\ 5 & 202 \\ 6 & 506 \\ 8 & 801 \\ 13 & 954 \\ 36 & 302 \\ 144 & 693 \\ 41 & 479 \\ 21 & 286 \\ 14 & 308 \\ 10 & 818 \\ 8 & 732 \\ 7 & 345 \\ 6 & 356 \\ 5 & 615 \\ 6 & 615 \\ 6$
;Rainfall 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050	(mm/hr) 01, 01, 01, 01, 01, 01, 01, 01, 01, 01,	/01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000	00:00:00 00:10:00 00:30:00 00:50:00 01:10:00 01:10:00 01:20:00 01:20:00 01:20:00 01:20:00 02:10:00 02:20:00 02:30:00 02:40:00 02:50:00 02:50:00 03:00:00	$\begin{array}{c} 4.828\\ 5.766\\ 7.214\\ 9.763\\ 15.496\\ 40.401\\ 161.471\\ 46.17\\ 23.66\\ 15.89\\ 12.006\\ 9.687\\ 8.146\\ 7.047\\ 6.224\\ 5.583\\ 5.07\\ 4.649\\ 0\end{array}$
;Rainfall 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100 3CH1100	(mm/hr) 01 01 01 01 01 01 01 01 01 01 01 01 01	/01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000	00:00:00 00:10:00 00:30:00 00:50:00 01:10:00 01:10:00 01:10:00 01:20:00 01:20:00 01:20:00 02:20:00 02:20:00 02:30:00 02:40:00 02:00:00 02:50:00 02:50:00 02:50:00 02:50:00 02:50:00	$\begin{array}{c} 5.339\\ 6.376\\ 7.977\\ 10.797\\ 17.136\\ 45.128\\ 178.107\\ 51.056\\ 26.163\\ 17.571\\ 13.277\\ 10.712\\ 9.008\\ 6.1883\\ 6.174\\ 5.607\\ 5.142\\ 0\end{array}$
;Rainfall 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120	(mm/hr) 01, 01, 01, 01, 01, 01, 01, 01, 01, 01,	/01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000 /01/2000	00:00:00 00:10:00 00:30:00 00:50:00 01:10:00 01:10:00 01:20:00 01:20:00 01:20:00 01:20:00 02:10:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	6.406801 7.6512 9.572401 12.9564 20.5632 54.1536 21.3.7284 61.2672 31.3956 21.0852 5.9324 12.8544 10.8096 9.351601 8.259601 7.4088 6.7284 6.7284 0
[REPORT] ;;Reportin INPUT CONTROLS SUBCATCHME NODES ALL LINKS ALL	g Options YES NO NTS ALL			
[TAS] Subcatch Subcat	S1 S10 S11 S12 S14 S15 S17 S18 S22 S23 S3 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5		Business_Pr Existing_ Commercial Residential SWM Block Commercial SWM Block Commercial SWM Block Commercial Existing Exi	ark L ark L L brage ble ble ble ble ble

Node Node Node Node Node Node Node Node	STM-11 STM-11 STM-14 STM-22 STM-22 STM-25 STM-45 STM-55 STM-55 STM-65 ST		Storm Md Storm Storm St Storm Storm St Storm Storm St Storm Storm St Storm Storm St Storm St	nhole inh			
[MAP] DIMENSIONS UNITS		474269.923 Meters	65 50	39753.75065	4766	42.45535	5042358.49235
[COORDINATE ;;Node	ES]	X-Coord		Y-Coord			
[VERTICES] ;;Link		X-Coord		Y-Coord			
[POLYGONS] ;;Subcatchr ;;	nent	X-Coord		Y-Coord			
 Too many su	ubcatch	nment entit:	ies (22 i	in total).			
;;Storage 1	Node	X-Coord		Y-Coord			
[SYMBOLS] ;;Gage ;;		X-Coord		Y-Coord			

Page 5 of 5

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

******* Element	* * * * E Co * * * *	**** Dunt ****	
Number Number Number Number Number	of of of of of	rain gages subcatchments nodes links pollutants land uses	1 22 38 34 0 0

***** Raingage Summary

	Name	Data Source			Data Type	Recordi Interva	ng l
	Rainfall	24SCS100			INTENSITY	15 min	
	**************************************	2000	Width	°. Tanao art	\$Clone	Dain Car	_
Οu	itlet	Alea	WIGCH	simperv	sarobe	Kain Gag	2
SI	SU2	3.49	/84.30	92.86	2.0000	Rainfall	
J2	S10	218.39	1690.00	0.30	1.5500	Rainfall	
St	S11 SU3	19.02	4278.69	92.86	2.0000	Rainfall	
St	S12 SU9	1.19	267.62	64.30	2.0000	Rainfall	
St	S14 SU6	2.43	547.85	92.86	2.0000	Rainfall	
CIA	S15 MF=3	0.50	112.59	28.57	3.0000	Rainfall	
01	S17	0.22	49.39	28.57	3.0000	Rainfall	
31	S18	4.63	1042.15	92.86	2.0000	Rainfall	
э.	- 507 	1.53	343.57	78.57	2.0000	Rainfall	
St	S04 S2	0.12	132.49	1.55	4.9800	Rainfall	
OF	'4 S2_1	3.39	132.49	1.55	4.9800	Rainfall	
SI	'M-7 S21	6.90	1552.95	92.86	2.0000	Rainfall	
St	SU1 322	2.11	475.85	78.57	2.0000	Rainfall	
St	SU5 S23	2.84	638.47	64.30	2.0000	Rainfall	
St	SU8 33	0.76	190.34	7.39	7.6200	Rainfall	
OF	'1 S4 2	8.44	325.22	0.00	9.7050	Rainfall	
SI	M-I5 54 3	0.29	11 18	0 00	9 7050	Rainfall	
OF	2	1 27	137 91	2 51	8 6900	Rainfall	
SI	M-14	23.09	368 32	0.67	5 7800	Painfall	
OF	5	23.05	160.12	20 57	2 0000	Deinfell	
SW	IMF-1	0.75	105.15	20.57	2.0000	Deinfell	
SW	MF-2	1.00	130.02	20.57	5.0000	Rainiaii	
SI	'M-13	4.52	217.02	20.44	5.4400	Rainiaii	
	Node Summary						
	******			Invert	Max.	Ponded	External
	Name	Туре		Elev.	Depth	Area	Inflow
	J2 OF1 OF2 OF3 OF4 OF5 OF6 St_SU1 ST_SU2 ST_SU2 ST_SU3	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE		45.52 43.92 53.62 53.60 50.65 50.65 50.62 51.35 52.80 52.98 54.02	4.50 1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

00 000	010IMGE	34.02	0.00	0.0	
St_SU4	STORAGE	52.83	0.50	0.0	
St_SU5	STORAGE	54.43	0.50	0.0	
St ⁻ SU6	STORAGE	55.48	0.50	0.0	
St_SU7	STORAGE	59.50	0.50	0.0	
St_SU8	STORAGE	59.00	0.50	0.0	
St_SU9	STORAGE	58.00	0.50	0.0	
STM-1	STORAGE	52.62	3.30	0.0	
STM-10	STORAGE	52.49	3.50	0.0	
STM-12	STORAGE	52.73	2.83	0.0	
STM-13	STORAGE	53.23	3.08	0.0	
STM-14	STORAGE	53.83	3.69	0.0	
STM-15	STORAGE	54.44	4.13	0.0	
STM-16	STORAGE	54.87	4.31	0.0	
STM-2	STORAGE	48.41	3.92	0.0	
STM-2A	STORAGE	49.22	4.08	0.0	
STM-3	STORAGE	53.99	2.44	0.0	
STM-4	STORAGE	50.22	3.27	0.0	
STM-5	STORAGE	49.40	3.93	0.0	
STM-6	STORAGE	49.82	2.73	0.0	
STM-7	STORAGE	50.82	3.70	0.0	
STM-8	STORAGE	51.79	3.14	0.0	
STM-9	STORAGE	52.10	2.89	0.0	
STMH-1	STORAGE	48.37	4.05	0.0	
STMH-3	STORAGE	50.00	2.92	0.0	
SWMF-1	STORAGE	48.26	1.50	0.0	
SWMF-2	STORAGE	49.24	1.50	0.0	
SWMF-3	STORAGE	51.50	1.50	0.0	
SWMF-4	STORAGE	54.50	1.50	0.0	

Link S ***** Name	ummary *****	From Node	To Node	Туре	Length
ssiope k	ougnness				
C1	0.0120	STMH-1	SWMF-1	CONDUIT	31.8
C10	0.0130	STM-10	STM-9	CONDUIT	112.4
0.3496 C11	0.0130	STM-14	STM-13	CONDUIT	128.0
0.3501 C12	0.0130	STM-15	STM-14	CONDUIT	176.4
0.3503	0.0130	STM_13	STM=12	CONDUTT	99.4
0.3502	0.0130	STM 15	STM 12	CONDUIT	33.4
0.3497	0.0130	STM-12	STM-9	CONDUIT	180.7
C15 0.3500	0.0130	STM-16	STM-15	CONDUIT	120.9
C2		STM-2	STMH-1	CONDUIT	13.1
0.3502 C3	0.0130	J2	OF1	CONDUIT	35.0
4.5697	0.0350				

Cross Section S	ummary					
Po11		Full	Full	Hyd.	Max.	No. of
Conduit Flow	Shape	Depth	Area	Rad.	Width	Barrels
C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	1.20 0.75 1.05 1.05 1.20 1.35 0.75	1.13 0.44 0.87 0.87 1.13 1.43 0.44	0.30 0.19 0.26 0.26 0.30 0.34 0.19	1.20 0.75 1.05 1.05 1.20 1.35 0.75	1 1 1 1 1 1 1 1
2 31 2 31 2 7 32 2 7 32 2 7 32 1 077 2 3 2 1 627 2 4 0 66 2 5 4 .18 C 6 4 .18 C 7 3 .16 C 3 2 7 3 .10 C 3 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	TRAPEZOIDAL TRAPEZOIDAL CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	1.20 1.00 0.90 1.05 0.75 1.50 1.35 1.35	1.13 6.00 0.64 0.87 0.44 1.77 1.77 1.43 1.43 1.43	0.30 0.64 0.23 0.26 0.19 0.38 0.38 0.34 0.34 0.34	9.00 0.90 1.05 0.75 1.50 1.35 1.35 1.35	1 1 1 1 1 1 1 1 1

* A * EF IESSEARWIRVMNH	Analysis Options Trocess Models: Rainfall/Runoff RDII Groundwater Flow Routing Ponding Allowed Water Quality nfiltration Method low Routing Method Larting Date ntecedent Dry Days eport Time Step et Time Step Ty Time Step axiable Time Step	CMS YES NO NO YES NO HORTON HORTON HORTON U/02/200 00:00 01/02/200 00:00 01/02/200 00:00 01/02/200 00:00 01/02/200 01/02/200 01/02/200 1/00 sec YES 8 1 0.001500 m	
* P	**************************************	Volume hectare-m	Depth mm
TEISFO	otal Precipitation vaporation Loss urface Runoff inal Storage ontinuity Error (%)	31.610 0.000 25.638 5.921 0.076 -0.079	103.200 0.000 83.704 19.330 0.248

Flow Routing Continuity Dry Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume Continuity Error (%)	Volume hectare-m 5,919 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,951 0,158	Volume 10^6 ltr 0.000 59.192 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000
Highest Continuity Errors Node STM-2A (1.95%) Node STM-4 (1.65%) Node STM-7 (1.39%) Node STM-7 (1.39%)		

***** Time-Step Critical Elements

November 2023

November 2023

None	
********** Highest Fl. ********** Link OL3 (Link OL3 () Link OL9 () Link OL8 () Link OL5 ()	<pre>************************************</pre>

Routing Time Step Summary			
Minimum Time Step	:	0.10	sec
Average Time Step	:	1.00	sec
Maximum Time Step	:	1.00	sec
% of Time in Steady State	:	0.00	
Average Iterations per Step	:	2.00	
% of Steps Not Converging	:	0.00	
Time Step Frequencies	:		
1.000 - 0.871 sec	:	99.54	9
0.871 - 0.758 sec	:	0.11	9
0.758 - 0.660 sec	:	0.06	9
0.660 - 0.574 sec	:	0.05	9
0 574 - 0 500 sec		0.24	8

***** Subcatchment Runoff Summary

						-			
Perv	Total		Total	Total Peak	Total Runoff	Total	Total	Imperv	
Runoff	Runoff		P	recip f Runofi	Runon f Coeff	Evap	Infil	Runoff	
Subcatch	hment			mm	mm	mm	mm	mm	
mm	mm	10^6	ltr	CMS					
						•			
S1			1	03.20	0.00	0.00	13.36	94.49	
12.94	88.54		3.09	1.09	0.858	0 00	07 05	0 00	
SIU	E 0.0		10 70	03.20	0.00	0.00	97.35	0.30	
0.00	5.80		12.79	02 20	0.057	0 00	12 26	04 40	
12 94	88 54		16 84	5 97	0.858	0.00	13.30	54.45	
S12	00.01		10.01	03.20	0.00	0.00	34.26	65.42	
15.87	68.21		0.81	0.35	0.661				
S14			1	03.20	0.00	0.00	13.36	94.49	
12.94	88.54		2.16	0.76	0.858				
S15			1	03.20	0.00	0.00	70.55	29.04	
32.53	32.53		0.16	0.12	0.315				
S17	20 52		0 01	03.20	0.00	0.00	70.55	29.04	
32.53	32.53		0.07	0.05	0.315	0 00	10.00	0.4 4.0	
12 04	00 54		4 10	03.20	0.00	0.00	13.36	94.49	
12.94	00.04		4.10	02 20	0.000	0 00	24 20	70 06	
13 95	77 92		1 1 9	03.20	0.00	0.00	24.25	/5.50	
\$2	11.52		1.10	03 20	0.00	0 00	74 16	1 57	
28.10	29.67		0.04	0.03	0.287	0.00	/ 1.10	1.07	
S2 1			1	03.20	0.00	0.00	83.57	1.57	
18.13	19.70		0.67	0.27	0.191				
S21			1	03.20	0.00	0.00	13.36	94.49	
12.94	88.54		6.11	2.17	0.858				
S22	77 00		1 65	03.20	0.00	0.00	24.29	79.96	
13.95	11.92		1.05	0.00	0.755	0.00	24.20	CE 40	
15 07	60 21		1 0 1	03.20	0.00	0.00	34.20	03.42	
13.07	00.21		1.54	03 20	0.001	0 00	71 09	7 52	
24.89	32.40		0.25	0.19	0.314	0.00	/1.05	/.52	
S4 2			1	03.20	0.00	0.00	83.21	0.00	
20.12	20.12		1.70	0.80	0.195				
S4 3			1	03.20	0.00	0.00	83.21	0.00	
20.12	20.12		0.06	0.03	0.195				
S5			1	03.20	0.00	0.00	76.88	2.55	
23.99	26.54		0.34	0.24	0.257	0 00	00.40	0 00	
56	10.04		2 1 0	03.20	0.00	0.00	89.40	0.68	
13.15	13.84		3.19	0.88	0.134	0.00	70 55	20.04	
22 62	22 52		0 24	03.20	0.00	0.00	/0.55	29.04	
58	52.55		0.24	03 20	0.00	0 00	70 55	29 04	
32.53	32.53		0.20	0.15	0.315	0.00		20.04	
S9			1	03.20	0.00	0.00	65.37	20.80	
16.85	37.64		1.63	0.66	0.365				

***** Node Depth Summary

		Average	Maximum	Maximum	Time	of Max	
Reported		Depth	Depth	HGL	0ccu	rrence	Max
Node	Type	Meters	Meters	Meters	days	hr:min	
Meters							
	JUNCTION	0.06	0.28	45.80	0	12:00	
0.28 OF1	OUTFALL	0.06	0.28	44.20	0	12:00	
0.28 OF2	OUTFALL	0.00	0.00	53.62	0	00:00	
0.00 OF3	OUTFALL	0.00	0.00	53.60	0	00:00	
0.00 OF4	OUTFALL	0.00	0.00	50.65	0	00:00	
0.00 OF5	OUTFALL	0.00	0.00	50.62	0	00:00	
OF6	OUTFALL	0.00	0.00	51.35	0	00:00	
St_SU1	STORAGE	0.00	0.17	52.97	0	12:01	
ST_SU2	STORAGE	0.00	0.26	53.24	0	12:01	
St_SU3	STORAGE	0.00	0.20	54.23	0	12:01	
St_SU4	STORAGE	0.00	0.33	53.15	0	12:00	
St_SU5	STORAGE	0.00	0.31	54.74	0	12:00	
St_SU6	STORAGE	0.00	0.26	55.75	0	12:01	
St_SU7	STORAGE	0.00	0.26	59.76	0	12:01	
St_SU8	STORAGE	0.00	0.36	59.36	0	12:00	
St_SU9	STORAGE	0.00	0.29	58.29	0	12:00	
STM-1	STORAGE	0.00	0.00	52.62	0	00:00	
STM-10	STORAGE	0.10	1.66	54.15	0	12:07	
STM-12 1.52	STORAGE	0.13	1.52	54.25	0	12:07	

STM-13	STORAGE	0.14	1.57	54.79	0	12:06
STM-14	STORAGE	0.10	1.49	55.32	0	12:05
STM-15	STORAGE	0.09	1.26	55.70	0	12:05
1.26 STM-16	STORAGE	0.33	0.88	55.74	0	12:06
0.88 STM-2	STORAGE	0.72	1.41	49.82	0	12:07
1.40 STM-2A	STORAGE	0.33	2.46	51.69	0	12:07
2.45 STM-3	STORAGE	0.00	0.00	53.99	0	00:00
0.00 STM-4	STORAGE	0.10	2.02	52.23	0	12:07
1.93 STM-5	STORAGE	0 74	1 60	51 00	0	12.07
1.59 STM-6	STORACE	0.52	1 00	51 71	0	12.07
1.88	STORAGE	0.52	1.05	51.71	0	12.07
2.93	STORAGE	0.20	2.93	53.76	0	12:07
STM-8 1.57	STORAGE	0.19	1.57	53.36	0	12:08
STM-9 1.62	STORAGE	0.16	1.63	53.73	0	12:07
STMH-1	STORAGE	0.74	1.39	49.75	0	15:09
STMH-3	STORAGE	0.13	2.09	52.09	0	12:07
SWMF-1	STORAGE	0.79	1.50	49.75	0	15:12
SWMF-2	STORAGE	0.79	1.49	50.73	0	16:02
1.49 SWMF-3	STORAGE	0.17	1.47	52.97	0	12:18
1.4/ SWMF-4	STORAGE	0.01	1.02	55.51	0	12:03
1.01						

**** Node Inflow Summary

			Maximum	Maximum			Lateral	
TOLAL	FIOW		Lateral	Total	Time	of Max	Inflow	
INIIOW	Balance		Inflow	Inflow	0ccu	rrence	Volume	
Volume Node	Error	Type	CMS	CMS	days	hr:min	10^6 ltr	
10^6 ltr	Percent							
		TUNCTION	2 310	2 452	0	12.00	12.8	
21.7	0.016	OUTENII	0 192	2 640	0	12.00	0 2/8	
21.9 0F2	0.000	OUTFALL	0.028	0.028	0	12.00	0.0584	
0.0584	0.000	OUTFALL	0.020	0.020	0	12.00	0.0304	
0.26	0.000	OUTFALL	0.000	0.024	0	12.00	0 0261	
0.0361	0.000	OURDALL	0.034	0.034	0	12.00	0.0301	
3.19	0.000	OUTFALL	0.000	0.000	0	12:00	5.19	
14.1	0.000	OUTFALL	0.000	1.608	0	12:18	0	
6.11 SUI	-0.278	STORAGE	2.166	2.166	0	12:00	6.11	
ST_SU2 3.09	-1.621	STORAGE	1.094	1.094	0	12:00	3.09	
St_SU3 16.8	-0.263	STORAGE	5.968	5.968	0	12:00	16.8	
St_SU4 1.19	0.223	STORAGE	0.469	0.469	0	12:00	1.19	
St_SU5 1.65	0.221	STORAGE	0.649	0.649	0	12:00	1.65	
St_SU6	-1.563	STORAGE	0.764	0.764	0	12:00	2.15	
St_SU7	-1.625	STORAGE	1.454	1.454	0	12:00	4.1	
St_SU8	0 394	STORAGE	0.835	0.835	0	12:00	1.93	
St_SU9	0.012	STORAGE	0.350	0.350	0	12:00	0.811	
STM-1	0.012	STORAGE	0.000	0.000	0	00:00	0	
STM-10	.000 101	STORAGE	0.000	0.599	0	11:49	0	
STM-12	1.623	STORAGE	0.000	3.111	0	12:00	0	
STM-13	-0.005	STORAGE	0.661	3.155	0	12:00	1.63	
STM-14	1.281	STORAGE	0.236	1.561	0	12:10	0.337	
4.59 STM-15	-1.1/2	STORAGE	0.804	1.422	0	12:00	1.7	
4.24 STM-16	-0.263	STORAGE	0.000	0.184	0	12:00	0	
0.743 STM-2	0.852	STORAGE	0.000	2.522	0	12:05	0	
9.02 STM-2A	0.148	STORAGE	0.000	2.550	0	12:04	0	
9.2 STM-3	1.984	STORAGE	0.000	0.000	0	00:00	0	
0 0 STM-4	.000 ltr	STORAGE	0.000	0.865	0	12:01	0	
3.14 STM-5	1.678	STORAGE	0.000	5.192	0	12:01	0	
18.4 STM-6	0.652	STORAGE	0.000	4.934	0	12:01	0	
17.3 STM-7	-0.095	STORAGE	0.266	4.954	0	12:00	0.667	
17.5 STM-8	1.411	STORAGE	0.000	3.861	0	12:04	0	
14 STM-9	0.016	STORAGE	0.000	3.511	0	11:58	0	
12.5 STMH-1	0.031	STORAGE	0.000	2.506	0	12:04	- 0	
9.01 STMH-3	0.295	STORAGE	0.000	0.864	0	12:02	ů.	
3.08 SWMF-1	0.277	STORAGE	0 187	2 649	0	12.02	0 245	
9.22 SWME-2	0.211	STORAGE	0.151	5 498	0	12.00	0.198	
18.6 SWME-2	0.212	STORAGE	0.124	1 086	0	12.00	0.140	
14.3	-0.015	STORAGE	0.124	4.000	0	12.00	0.103	
0.26	0.001	STUKAGE	0.055	0.003	U	12:00	0.0/14	

Node Surcharge Summary No nodes were surcharged.

Node Flooding Summary

No nodes were flooded.

November 2023

		Average	Avg	Evap	Exfil	Maximum	Max	Time
or Max	Maximum	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Storage	e Outflow Unit	1000 m³	Full	Loss	Loss	1000 m³	Full	days
hr:min	CMS							
St SU1		0.002	0.2	0.0	0.0	0.259	34.5	0
12:0T ST SU2	1.704	0.001	0.4	0.0	0.0	0.129	51.5	0
12:0T St SU3	0.865	0.005	0.3	0.0	0.0	0.714	40.8	0
12:0T St SU4	4.688	0.001	0.7	0.0	0.0	0.072	65.0	0
12:00 St SU5	0.465	0.001	0.6	0.0	0.0	0.094	62.0	0
12:00 St SU6	0.646	0.001	0.4	0.0	0.0	0.092	52.9	0
12:0T St SU7	0.599	0.001	0.4	0.0	0.0	0.172	51.9	0
12:0T St SU8	1.147	0.002	0.8	0.0	0.0	0.171	72.2	0
12:00 St SU9	0.775	0.001	0.7	0.0	0.0	0.045	58.6	0
12:00 STM-1	0.348	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 STM-10	0.000	0.000	2.8	0.0	0.0	0.002	47.4	0
12:07 STM-12	0.597	0.000	4.8	0.0	0.0	0.002	53.6	0
12:07 STM-13	2.936	0.000	4.6	0.0	0.0	0.002	50.9	0
12:06 STM-14	3.111	0.000	2.7	0.0	0.0	0.002	40.4	0
12:05 STM-15	1.686	0.000	2.2	0.0	0.0	0.001	30.5	0
12:05 STM-16	1.456	0.000	7 8	0.0	0.0	0 001	20.3	0
12:06 STM-2	0.275	0 001	18 3	0.0	0.0	0 002	36.0	0
12:07 STM-22	2.506	0 000	8 1	0.0	0.0	0.003	60.4	0
12:07 STM-3	2.522	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	0.000	0.000	3 2	0.0	0.0	0.000	61 7	0
12:07	0.864	0.000	10 0	0.0	0.0	0.002	10 6	0
12:07	5.172	0.001	10.5	0.0	0.0	0.002	40.0	0
12:07	4.917	0.001	19.2	0.0	0.0	0.002	70.0	0
12:07	4.934	0.000	0.4	0.0	0.0	0.003	50.0	0
12:08	3.849	0.000	6.I	0.0	0.0	0.002	50.0	0
12:07	3.485	0.000	0.0	0.0	0.0	0.002	30.3	0
15:09	2.502	0.001	18.3	0.0	0.0	0.002	34.2	U
STMH-3 12:07	0.910	0.000	4.5	0.0	0.0	0.002	/1.6	U
SWMF-1 15:12	0.064	3.549	51.9	0.0	0.0	6.824	99.7	0
SWMF-2 16:02	0.119	7.399	51.9	0.0	0.0	14.172	99.3	0
SWMF-3 12:18	1.608	0.519	10.4	0.0	0.0	4.839	97.4	0
SWMF-4 12:03	0.235	0.001	0.6	0.0	0.0	0.127	52.0	0

Inlet Conduit Ctrl	/Actual Length	Dry	Up Dry	Down Dry	Sub Crit	Sup Crit	Up Crit	Down Crit	Norm Ltd
 0.1 0.00 0.00 0.11 0.00 0.12 0.00 0.13 0.00 0.13 0.00 0.14 0.00 0.15 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.23 0.00 0.00 0.23 0.00 0.00 0.00 0.25 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.81 0.95 0.03 0.95 0.01 0.96 0.02 0.96 0.21 0.52 0.51 0.01 0.73 0.96 0.51 0.22	0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.93 0.00 0.95 0.00 0.92 0.00 0.00 0.43 0.45 0.94 0.00 0.45 0.00	0.10 0.89 0.00 0.87 0.00 0.91 0.01 0.01 0.03 0.50 0.00 0.00 0.31 0.49 0.06
0.00 C9 0.00	1.00	0.04	0.00	0.00	0.96	0.00	0.00	0.00	0.89

Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
C1 C10 C11 C12 C13 C14 C15 C2 C2 C3 C3 C4 C4 C4 C5 C6 C7 C8 C9	11.86 0.41 0.17 0.13 0.13 0.01 11.29 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	$\begin{array}{c} 11.97\\ 0.41\\ 0.23\\ 0.13\\ 0.18\\ 0.13\\ 0.01\\ 11.34\\ 0.30\\ 0.35\\ 0.30\\ 0.09\\ 0.30\\ 0.33\\ 0.23\\ 0.20\\ \end{array}$	$\begin{array}{c} 11.88\\ 0.84\\ 0.13\\ 0.23\\ 0.23\\ 0.13\\ 11.97\\ 0.35\\ 11.34\\ 0.30\\ 0.01\\ 0.09\\ 0.30\\ 0.46\\ 0.23\\ \end{array}$	$\begin{array}{c} 0.25\\ 0.01\\ 0.03\\ 0.01\\ 0.31\\ 0.01\\ 0.25\\ 0.01\\ 0.36\\ 0.33\\ 0.33\\ 0.31\\ 0.30\\ 0.34\\ 0.29\\ 0.22 \end{array}$	0.03 0.27 0.15 0.01 0.12 0.01 0.13 0.01 0.13 0.01 0.18 0.29 0.01 0.09 0.29 0.04 0.15
Analysis begun on: Analysis ended on: Total elapsed time:	Tue Nov 21 14 Tue Nov 21 14 00:00:02	4:53:41 202 4:53:43 202	3		

Storage Volume Summary

Outfall Node	Flow Freq Pcnt	Avg Flow CMS	Max Flow CMS	Total Volume 10^6 ltr
OF1 OF2 OF3 OF4 OF5 OF5 OF6	95.74 8.63 11.79 12.56 95.78 93.81	0.269 0.008 0.027 0.003 0.040 0.176	2.640 0.028 0.235 0.034 0.880 1.608	21.944 0.058 0.260 0.036 3.195 14.094
System	53.05	0.524	5.007	39.587

Link	Туре	Maximum Flow CMS	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1 C10 C11 C12 C13 C14 C15 C2 C3 C4 C5 C6 C7 C8 C7 C8 C9 0R2 0R2 0R2 0R3 W5 W6 W7 OL1 OL2 OL3 OL4 OL9 OL9 V7 C10 C12 C3 C3 C4 C5 C5 C5 C6 C7 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9	CONDUIT CONT CONT CONT CONT CONT CONT CONT CON	$\begin{array}{c} 2, 502\\ 0, 597\\ 1, 686\\ 3, 114\\ 2, 936\\ 0, 275\\ 2, 4518\\ 0, 275\\ 2, 4518\\ 0, 275\\ 2, 4518\\ 0, 275\\ 2, 4518\\ 0, 275\\ 2, 4518\\ 0, 275\\ 2, 4917\\ 4, 934\\ 3, 849\\ 5, 172\\ 4, 934\\ 0, 114\\ 1, 635\\ 0, 269\\ 0, 164\\ 1, 704\\ 0, 164\\ 0, 2757\\ 0, 269\\ $	<pre>1 22:04 0 12:05 0 12:08 0 12:10 0 12:10 0 12:00 0 12:00 0 12:00 0 12:00 0 12:00 0 12:00 0 12:00 0 12:01 0 12:01 0 12:01 0 12:01 0 12:01 0 12:01 0 12:00 0 12:00</pre>	2,63 1,35 2,02 2,84 2,20 1,23 2,26 2,227 1,33 2,23 1 2,30 4,01 2,82 3,45 3,42 2,44	1,09 0,91 0,90 1,35 0,93 0,42 1,09 0,079 1,00 0,799 1,12 1,21 1,21 1,22 1,10	1.00 1.00 1.00 1.00 1.00 0.80 1.00 0.280 1.00 0.280 1.00
 	Adjusted		Fraction	of Time in	Flow Cla	185

Page 3 of 3

ROCKLAND WEST SECONDARY STUDY Rockland, ON

J.L. Richards copyright and	DESIGN:	ID	JLR NO.: 31097-000
project of these jinal project	DRAWN:	ID	
permitted or rization of JLR	CHECKED:	BP	TIOUNE 0

November 2023

[TITLE] ;;Project Title/N	lotes						S12 S14		76.2 76.2	13.2 13.2	4.14	7	0	
[OPTIONS] ;;Option	Value						S15 S16 S17		76.2 76.2 76.2	13.2 13.2 13.2	4.14 4.14 4.14	7 7 7	0 0 0	
FLOW UNITS INFILTRATION	CMS HORTON	F					S18 S19		76.2	13.2 13.2	4.14	7 7	0	
LINK OFFSETS MIN_SLOPE	ELEVAT 0	ION					S2 1 S2T		76.2	13.2 13.2 13.2	4.14 4.14	, 7 7	0	
ALLOW PONDING SKIP_STEADY_STATE	NO NO						S22 S3		76.2	13.2 13.2	4.14	7 7	0	
START_DATE START_TIME	01/01/	2000 00					\$4-2 \$4-3 \$5-		76.2	13.2 13.2 13.2	4.14 4.14	7 7 7	0	
REPORT START DATE REPORT START TIME	01/01/	2000					S6 S7		76.2	13.2	4.14	7 7	0	
END_DATE END_TIME SWEEP_START	01/03/. 00:00:00:00:00:00	00					58 59		76.2	13.2	4.14	7	0	
SWEEP_END DRY_DAYS	12/31 0						[JUNCTION ;;Name	IS]	Elevation	MaxDepth	n InitDepth	h SurDepth	Aponded	
REPORT STEP WET STEP	00:01:	00					;; J2		45.521	4.5	0	0	0	
ROUTING STEP RULE STEP	1 00:00:	00					[OUTFALLS; ; Name	3]	Elevation	Type	Stage Dat	ta Gat	ed Route ?	ľo
INERTIAL DAMPING	PARTIA	L					,, OF1		43.921	FREE		NO		
FORCE MAIN EQUATI	ON H-W 0.75						OF4 OF5		50.646 50.624	FREE FREE		NO NO NO		
LENGTHENING STEP MIN_SURFAREA	0						OF6		51.352	FREE		NO		
MAX TRIALS HEAD TOLERANCE	0.0015						[STORAGE] ;;Name SurDepth	Feuen	Elev. M	MaxDepth	InitDepth	Shape	Curve Name/1	Params
LAT FLOW TOL MINIMUM STEP	5 0.5						;;							
THREADS	18						St_SU1 1500	0	52.799 (0	0.5	0	FUNCTIONAL	0 0	
;;Data Source	Parameters						500 St SU3	0	0 54.024 ().5	0	FUNCTIONAL	0 0	
CONSTANT DRY_ONLY	0.0 NO						3500 St_SU4	0	0 52.829 (0.5	0	FUNCTIONAL	0 0	
[RAINGAGES]	Format	Interval SC	E Sour	<u></u>			220 St_SU5 155 943	0	56.832 (0.5	0	FUNCTIONAL	0 0	
Rainfall	INTENSITY	0:15 1.	0 TIME:	SERIES 24SC	S100		St_SU6 1281.157	0	57.242 (0.5	0	FUNCTIONAL	0 0	
[SUBCATCHMENTS]	Daia Cara	0+ 3		2	° T	Mi Jeb	St_SU7 92.686	0	57.042 (0	0.5	0	FUNCTIONAL	0 0	
%Slope CurbLen	SnowPack	Out1	.e.	Area	simperv		St SU8 429.733 St SU9	0	0 58.679).5).5	0	FUNCTIONAL	0 0	
s1	Rainfall	 St S	U2	3.4858	92.857	784.305 2	198.233 STM-1	0	0 52.62	3.301	0	FUNCTIONAL	0 0	
0 S10	Rainfall	J2		218.3856	0.296	1690	1.13 STM-10	0	0 52.99 :	3.316	0	FUNCTIONAL	0 0	
sii 0	Rainfall	St_S	U3	17.4162	92.857	3918.645 2	STM-11 1.13	0	53.348 3	3.471	0	FUNCTIONAL	0 0	
S12 0	Rainfall	St_S	108	2.5784	64.3	580.14 2	STM-12 1.13	0	54.005	3.261	0	FUNCTIONAL	0 0	
S14 0 S15	Rainfall	SUME		0 5004	92.857 28.571	245.61 Z	STM-13 1.13 STM-14	0	0 55 652	2.487	0	FUNCTIONAL	0 0	
0 S16	Rainfall	SWMF	-4	0.2592	28.571	58.32 3	1.13 STM-15	0	0 56.05	3.129	0	FUNCTIONAL	0 0	
0 S17	Rainfall	St_S	U9	1.1894	64.3	267.618 2	1.13 STM-2	0	48.412	3.921	0	FUNCTIONAL	0 0	
S18 0	Rainfall	St_S	U6	8.9681	92.857	2017.822 2	STM-2A 1.13	0	49.223 4	1.076	0	FUNCTIONAL	0 0	
\$19 0	Rainfall	St_S	U7	0.6488	64.3	145.98 2	STM-3 1.13	0	53.987 2	2.437	0	FUNCTIONAL	0 0	
S2 4.98 0 S2 1	Rainfall	OF4 STM-	.7	3 3857	1.546	132.493	STM-4 1.13 STM-5	0	50.216 . 0 49.4	3.269	0	FUNCTIONAL	0 0	
4.98 0 S21	Rainfall	St S	Ul	6.902	92.857	1552.95 2	1.13 STM-6	0	0 49.821	2.726	0	FUNCTIONAL	0 0	
0 \$22	Rainfall	st_s	U4	1.8199	64.3	409.478 2	1.13 STM-7	0	0 50.824 :	3.7	0	FUNCTIONAL	0 0	
s3 7.62 0	Rainfall	OF1		0.7641	7.391	190.345	STM-8 1.13	0	51.636 2	2.737	0	FUNCTIONAL	0 0	
S4_2 9.705_0	Rainfall	STM-	14	8.4446	0	325.221	STM-9 1.13	0	52.148 2 0	2.953	0	FUNCTIONAL	0 0	
9.705 0 S5	Rainfall	OF2 STM-	-13	1.2699	2.511	137.91	1.13 STMH-3	0	48.366	2.921	0	FUNCTIONAL	0 0	
8.69 0 S6	Rainfall	OF5		23.0913	0.671	368.322	1.13 SWMF-1	0	0 48.255	1.5	0	PYRAMIDAL	63 63	3 3
5.78 0 S7	Rainfall	SWMF	-1	0.7517	28.571	169.133 3	0 SWMF-2	0	49.24	1.5	0	PYRAMIDAL	89 85	э з
58 0	Rainfall	SWME	-2	0.6072	28.571	136.62 3	SWMF-3	0	51.5	1.5	0	PYRAMIDAL	56 56	5 3
S9 5.44 0	Rainfall	STM-	12	4.3245	20.441	217.02	SWMF-4 0	0	57.433	1.5	0	PYRAMIDAL	4 4	3
[SUBAREAS] ;;Subcatchment PctRouted ;;	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	RouteTo	[CONDUITS ;;Name OutOffset ;;	3] : InitF	From Node low MaxF	To Low	Node	Length	Roughness	InOffset
S1	0.013	0.25	1.57	4.67	0	PERVIOUS	C1	·	STMH-1	SI	/MF-1	31.803	0.013	48.366
\$10 \$11	0.013 0.013	0.25	1.57 1.57	4.67 4.67	0	OUTLET PERVIOUS	c10 52.148	0	STM-10	SI	ГМ-9	240.64	0.013	52.99
20 \$12	0.013	0.25	1.57	4.67	0	PERVIOUS	C11 52.99	0	STM-11 0	SI	CM-10	102.421	0.013	53.348
20 S14 20	0.013	0.25	1.57	4.67	0	PERVIOUS	C12 53.798	0	STM-12 0 STM-13	Si	M-11	29.208	0.013	54.005
\$15 100	0.013	0.25	1.57	4.67	0	PERVIOUS	54.005 C14	0	0 STM-14	SI	TM-13	178.106	0.013	55.652
S16 100	0.013	0.25	1.57	4.67	0	PERVIOUS	55.029 C15	0	0 STM-15	SI	CM-14	113.827	0.013	56.35
20 S18	0.013	0.25	1.57	4.67	0	PERVIOUS	55.952 C2 48.366	0	STM-2	SI	MH-1	13.136	0.013	48.412
20 \$19	0.013	0.25	1.57	4.67	0	PERVIOUS	C3 43.921	0	J2 0	OI	71	35.05	0.035	45.521
20 S2	0.013	0.25	1.57	4.67	0	OUTLET	C3_1 49.373	0	STMH-3 0	SI	-2A	188.688	0.013	50.033
\$21 20	0.013	0.25	1.57	4.67	Ő	PERVIOUS	48.562 C4	0	SIM-2A 0 STM-4	S1 S1	IM-2 IMH-3	9.357	0.013	50.216
S22 20	0.013	0.25	1.57	4.67	0	PERVIOUS	50.183 C5	0	STM-5	SI	MF-2	45.799	0.013	49.4
S3 S4_2 S4_3	U.013 0.013 0.013	0.25 0.25 0.25	1.57 1.57 1.57	4.67 4.67 4.67	0	OUTLET OUTLET	49.24 C6	0	STM-6	SI	rm-5	120.279	0.013	49.821
\$5 \$6	0.013 0.013	0.25 0.25	1.57 1.57	4.67 4.67	0 0	OUTLET	C7 49.971	0	STM-70	SI	°M-6	243.631	0.013	50.824
S7 100	0.013	0.25	1.57	4.67	0	PERVIOUS	C8 51.5	0	STM-8 0	SV	MF-3	38.75	0.013	51.636
100 S9	0.013	0.25	1.57	4.67	0	OUTLET	51.636	0	0 0 0	SI		140.187	0.013	JZ.148
[INFILTRATION]	Dama 1	Dan C	Den O	Dan	D	-	[ORIFICE: Name	8] 	From Node	To	Node	Туре	Offset	Qcoeff
;;Subcatchment ;;S1	raram1 76.2	Param2 13.2	4.14	raram4 7	Param5 0		Gated ;;	CIOSETI:	me 					
S10 S11	76.2	13.2 13.2	4.14 4.14	7 7	0		OR1 NO	0	SWMF-1	Jź	2	SIDE	48.255	0.6

November 2023

OR2		SWMF-2		J2		SIDE	49.	24	0.6
NO OR3	0	SWMF-3		OF6		SIDE	51.	5	0.6
NO OR5	0	SWMF-4		OF2		SIDE	57.	433	0.6
NO	0								
Gated	EndCon	From Node EndCoeff	Surcl	To Node harge Road	Width	Type RoadSurf	Cre Coeff	stHt . Curve	Qcoeff
 W1		St SU7		St SU5		TRANSVERSE	57.	292	1.84
NO W3	0	0 St_SU4	NO	SWMF-2		TRANSVERSE	53.	079	1.84
NO W6	0	0 St_SU8	NO	SWMF-4		TRANSVERSE	59.	25	1.84
NO W7 NO	0	st_su9	NO	SWMF-4		TRANSVERSE	58.	929	1.84
LOUTLETS	1	0	NO						
;;Name QTable/Qc	coeff	From Node Qexpon	Gated	To Node		Offset	Туре		
OL1		St_SU1	NO.	STM-2A		52.799	TABUI	AR/HEAD	
OL2 OL2		ST_SU2	NO	STM-4		52.985	TABUI	AR/HEAD	
OL3 OL3		St_SU3	NO	STM-7		54.024	TABUI	AR/HEAD	
OL4 OL4		St_SU4	NO	STM-5		52.829	TABUI	AR/HEAD	
OL5 OL5		St_SU5	NO	STM-8		56.832	TABUI	AR/HEAD	
OL6 OL6		St_SU6	NO	STM-11		57.242	TABUI	AR/HEAD	
OL7 OL7		St_SU7	NO	STM-9		57.042	TABUI	AR/DEPTI	H
OL8 OL8		St_SU8	NO	STM-14		59	TABUI	AR/DEPTI	-
OL9 OL9		St_SU9	NO	STM-15		58.6/9	TABUI	AR/DEPTI	1
[XSECTION ;;Link Barrels	NS] Culve:	Shape rt	Geor	nl	Geom	2 Geo	om3	Geom4	
		CIRCULAR	1 2		0	0		0	1
C10 C11		CIRCULAR	1.5		ŏ	Ő		ŏ	1
C12 C13		CIRCULAR	1.0	5	0	0		0	1
C14 C15		CIRCULAR	1.0	5	0	0		0	1
C2 C3		CIRCULAR TRAPEZOIDAI	1.2 L 1		03	03		0 3	1
C3_1 C3_2		CIRCULAR CIRCULAR	0.9	5	0	0		0	1
C4 C5		CIRCULAR	0.75	5	0	0		0	1
C6 C7		CIRCULAR	1.5	5	0	0		0	1
C8		CIRCULAR	1.5		0	0		0	1
OR1 OR2		CIRCULAR	0.1	2	0	0		0	
OR5		CIRCULAR	0.3	25 L	0	0		0	
W1 W3 W6		RECT OPEN	0.2	5	5	0		0	
W7		RECT_OPEN	0.2	5	10	ő		õ	
[LOSSES]		Kentry	Kexit	Kavq	F	lap Gate	Seepad	re	
;; C1		0	0.5	<u>-</u> -	 N	0	0		
C10 C11		0	1.064 0.02	0	N N	0	0		
C12 C13		0	0.032	0	N N	0 0	0		
C14 C15		0	1.319	0	N	0	0		
C3_2		0	0.63	0	N	0	0		
C5 C6		0	0.5	0	N	0	0		
C7 C8		0	0.032	0	N	0	0		
C9		0	0.461	0	Ν	0	0		
[CURVES];;Name		Туре	X-Valı	ie Y-Val	ue				
;Capture	rate 1:	5-year flow	calula Guide	ated using	rationa	l method a	and Tc	of 10 m	in as
OL1 OL1		Rating	0.001	0	•				
OL1 OL1			0.35	1.709	9				
;Capture	rate 1:	5-year flow	calula	ated using	rationa	l method a	and Tc	of 10 m:	in as
per Clare OL2	ence Roci	kland Design	n Guide	elines					
OL2 OL2		Rating	0	0					
OL2		Racing	0 0.001 0.35	0.858	8				
per Clare	mate 1.1	Kating	0 0.001 0.35 0.5	0 0.858 0.868 0.868	rationa	1 method -	and To	of 10 m	
013	rate 1: ence Roci	5-year flow kland Design	0 0.001 0.35 0.5 calula	0.858 0.868 0.868 0.868 ated using alines	rationa	l method a	ind Tc	of 10 m:	in as
0L3 0L3 0L3	rate 1:: ence Roci	5-year flow kland Design Rating	0 0.001 0.35 0.5 calula n Guide 0 0.001 0.35	0.858 0.868 0.868 ated using alines 0 4.682	rationa	l method a	and Tc	of 10 m:	in as
OL3 OL3 OL3 OL3	rate 1:: ance Roci	Alling 5-year flow Kland Design Rating	0 0.001 0.35 0.5 calula n Guide 0 0.001 0.35 0.5	0 0.858 0.868 0.868 0.868 0 10 0 4.682 4.692 4.692	rationa	l method a	and Tc	of 10 m:	in as
OL3 OL3 OL3 OL3 ;Capture per Clare	rate 1: ence Roci rate 1: ence Roci	5-year flow kland Design Rating 5-year flow kland Design	0 0.001 0.35 0.5 calula 0.001 0.35 0.5 calula n Guide	0 0.858 0.868 0.868 ated using ated using 4.692 4.692 4.692 ated using atimes	rationa	l method a l method a	and Tc	of 10 m: of 15 m:	in as in as
OL3 OL3 OL3 OL3 Capture per Clare OL4 OL4	rate 1: ence Roci rate 1: ence Roci	Kating 5-year flow kland Design Rating 5-year flow kland Design Rating	0 0.001 0.35 0.5 calula 0 0.001 0.35 0.5 calula 0.05 calula 0.001 0.001	0 0.856 0.866 0.866 ated using alines 4.682 4.692 4.692 4.692 4.692 4.692 0.0275	rationa	l method a l method a	and Tc	of 10 m: of 15 m:	in as in as
OL3 OL3 OL3 OL3 OL3 Capture per Clare OL4 OL4 OL4 OL4	rate 1:: ence Roci rate 1: ence Roci	Kaling 5-year flow Kland Design Rating 5-year flow Kland Design Rating	0 0.001 0.35 0.5 calula 0.001 0.35 0.5 calula 0.001 0.001 0.35 0.5 0.5	0 0.856 0.866 0.866 0.866 0 4.692 4.692 4.692 4.692 0.285 0.285 0.285	rationa	l method a l method a	and Tc	of 10 m: of 15 m:	in as in as
OL3 OL3 OL3 OL3 ;Capture per Clare OL4 OL4 OL4 OL4 OL4 ;Capture	rate 1:: ence Roci rate 1:: ence Roci rate 1::	Kaling 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow	0 0.001 0.35 0.5 calulá 0 0.001 0.35 0.5 calulá 0.001 0.35 0.5 calulá 0.001 0.35 0.5 calulá	0 0.856 0.866 0.866 0.866 0 4.692 4.692 4.692 4.692 4.692 0.275 0.285 0.285 0.285	rationa	l method a l method a l method a	and Tc	of 10 m: of 15 m: of 10 m:	in as in as
OL3 OL3 OL3 OL3 OL3 OL4 OL4 OL4 OL4 OL4 OL4 OL4 OL4 OL4 OL4	rate 1:1 ence Rocl rate 1:1 ence Rocl rate 1:1	Kaling 5-year flow kland Design Rating Constant Design Rating 5-year flow kland Design Rating	0 0.001 0.35 0.5 calula 0.001 0.35 0.5 calula 0.001 0.35 0.5 calula n.Guide 0 0.001	0 0.856 0.866 ated using elines 4.682 4.692 4.692 4.692 4.692 0.285 0.285 0.285 0.285 0.285 0.285 0.285	rationa	l method a l method a l method a	and Tc	of 10 m: of 15 m: of 10 m:	in as in as in as
OL3 OL3 OL3 OL3 Capture per Clare OL4 OL4 OL4 OL4 OL4 OL4 OL4 OL5 OL5 OL5 OL5	rate 1:1 ence Rocl rate 1:1 ence Rocl rate 1:1 ence Rocl	Kating 5-year flow Kating 5-year flow Kland Design Rating 5-year flow Kland Design Rating	0 0.001 0.35 0.5 calula n Guide 0 0.001 0.35 0.5 calula 0.001 0.35 0.5 calula n Guide 0 0.001 0.35 0.5	0 0.856 0.866 0.866 1100 0 4.682 4.682 4.682 4.682 4.682 4.692 0.285 0.285 10.285 10.285 10.285 10.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.275 0.285 0.285 0.275 0.285 0.265 0.275 0.285 0.275 0.285 0.275 0.285 0.275 0.285 0.275 0.285 0.275 0.285 0.275 0.285 0.275 0.285 0.275 0.285 0.255	rationa	l method a l method a l method a	and Tc	of 10 m: of 15 m: of 10 m:	in as in as
bL3 oL3 oL3 oL3 oL3 cCapture per Clare oL4 oL4 oL4 oL4 oL4 oL5 oL5 oL5 oL5 oL5	rate 1:: ence Roci rate 1:: ence Roci rate 1:: ence Roci	Kating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating	0.001 0.35 0.5 calula n Guide 0.001 0.35 0.5 calula 0.001 0.35 0.5 calula n Guide 0.001 0.35 0.5 calula 0.35 calula 0.5 calula 0.35 calula 0.5 calula 0 calula 0.5 calula 0.5 calula 0.5 calula 0.5 calula 0.5 calu	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rationa rationa rationa	l method a l method a l method a	and Tc	of 10 m of 15 m of 10 m	in as in as
<pre>bL3 oL3 oL3 oL3 oL3 oL3 cCapture per Clare oL4 oL4 oL4 oL4 oL5 oL5 oL5 cL5 cL5 cL5 cL5</pre>	rate 1: nce Roci rate 1: ence Roci rate 1: ence Roci	Kating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating	0 0.001 0.35 0.5 calula n Guide 0 0.001 0.35 0.5 calula n Guide 0 0.001 0.35 0.5 calula 0.35 calula 0.35 c	0.855 0.866 0.866 0.866 0.866 0.867 0.867 4.692 4.692 4.692 4.692 0.287 0.287 0.287 0.287 0.287 0.287 0.281 0.281 0.281 0.291 0.281 0.291 0.281 0.2910	rationa rationa rationa rationa	l method a l method a l method a	and Tc and Tc and Tc	of 10 m: of 15 m: of 10 m: of 10 m:	in as in as in as
bL3 oL3 oL3 oL3 oL3 oL3 sCapture per Clare oL4 oL4 oL4 oL4 oL4 oL4 oL4 oL4 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL6 oL6	rate 1:: nce Roci rate 1:: nce Roci rate 1:: ence Roci	Kating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating	0 0.001 0.35 0.5 calul; n Guidd 0 0.001 0.35 0.5 calul; n Guidd 0 0.001 0.35 0.5 calul; n Guidd 0 0.001 0.35 0.5 calul; n Guidd 0 0.001 0.35 0.5 calul; n Guidd 0.001 0.35 0.5 calul; n Guidd 0.001 0.35 0.5 calul; 0.35 0.5 calul; 0.001 0.35 0.5 calul; 0.35 0.5 calul; 0.05 calul; 0.05 0.5 calul; 0.35 0.5 calul; 0.05 0.5 calul; 0.05 0.5 calul; 0.05 0.5 calul; 0.05 0.5 calul; 0.05 0.5 calul; 0.05 0.5 calul; 0.05 0.5 calul; 0.05 0.5 calul; 0.05 calu]; 0.05 calu]; 0.05 calu]; 0.5 calu; 0.5 calu]; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 calu; 0.5 ca	0 855 0.866 0.866 0.866 0.866 0.867 0.867 4.692 4.692 4.692 4.692 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.295 0.285 0.295 0.295 0.295 0.275	rationa rationa rationa rationa	l method a l method a l method a	and Tc and Tc and Tc	of 10 m: of 15 m: of 10 m: of 10 m:	in as in as in as
<pre>bL3 oL3 oL3 oL3 oL3 oL3 oL4 oL4 oL4 oL4 oL4 oL4 oL5 ;Capture per Clare oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5</pre>	rate 1:: rate 1:: ence Roci rate 1:: ence Roci	Kating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating 5-year flow Kland Desig; Rating	0 0.001 0.35 0.5 calul, 0.001 0.35 0.5 calul, 0.001 0.35 0.5 calul, 0.001 0.35 0.5 calul, 0.001 0.35 0.5 calul, 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.	0 855 0.866 0.866 0.866 0.866 0.866 0.867 4.692 4.692 4.692 4.692 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.275 0.285 0.275 0.285 0.275	rationa rationa rationa rationa	l method a l method a l method a	and Tc and Tc and Tc	of 10 m: of 15 m: of 10 m: of 10 m:	in as in as in as
<pre>bL3 oL3 oL3 oL3 oL3 oL3 oL4 oL4 oL4 oL4 oL4 oL4 oL4 oL4 oL5 ;Capture per Clare oL5 oL5 iCapture per Clare oL6 oL6 oL6 oL6 oL6 oL6 oL6 oL6 oL6 oL6</pre>	rate 1:: ence Roci rate 1:: ence Roci rate 1:: ence Roci rate 1:: ence Roci	Kating 5-year flow kland Design Rating 5-year flow Rating 5-year flow Kland Design Rating 5-year flow Rating 5-year flow Kland Design Rating 5-year flow	0 0.001 0.35 0.5 calul; 0.001 0.35 0.5 calul; 0.001 0.35 0.5 calul; 0.001 0.35 0.5 calul; 0.001 0.35 0.5 calul; 0.001 0.35 0.5 calul; 0.001 0.35 0.5 calul; 0.35 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 0.5 calul; 0.35 calul; 0.35 0.5 calul; 0.35 calu]; 0.35 calul; 0.35 calul; 0.35 calu]; 0.35 calul; 0.35 calu]; 0.35 calul; 0.35 calul; 0.35 calul; 0.35 calu]; 0.35 calul; 0.35 calu]; 0.35 calul; 0.35 calu]; 0.35 calul; 0.35 calu]; 0.	0 855 0.866 0.866 0.866 0.866 0.867 0.867 4.692 4.692 4.692 4.692 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.275 0.285 0.275	rationa rationa rationa rationa rationa	l method a l method a l method a l method a	and Tc and Tc and Tc	of 10 m. of 15 m. of 10 m. of 10 m.	in as in as in as
bL3 oL3 oL3 oL3 scapture per Clare oL4 oL4 oL4 oL4 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5 oL5	rate 1: ence Roci rate 1: ance Roci rate 1: ence Roci rate 1: ence Roci	Kating 5-year flow kland Design Rating 5-year flow Kland Design Rating 5-year flow Kland Design Rating 5-year flow Kland Design Rating 5-year flow Kland Design Rating	0 0.001 0.35 calul, n Guido 0.05 calul, n Guido 0.001 0.35 0.5 calul, n Guido 0.001 0.35 calul, n Guido 0.05 calul, n Guido 0.001 calul, n Guido 0.0000 calul, n Guido 0.0000 calul, n Guido 0.00000 calul, n Guido 0.00000 calul, n Guido 0.00000 calul, n Guido 0.0000000 calul, n Guido 0.00000000000000000000000000000000000	0.65(0.65(0.86(0.86(0.86(0.86(0.86(0.86(0.86(0.27(0.27(0.28(0.28(0.28(0.28(0.28(0.28(0.27(0))))))))))))))))))))))))))))))))))))	rationa rationa rationa rationa	l method a l method a l method a l method a	and Tc and Tc and Tc	of 10 m. of 15 m. of 10 m. of 10 m.	in as in as in as

3CHI005 3CHI005 3CHI005 3CHI005 3CHI005 3CHI005		01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	02:10:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	4.733 4.186 3.76 3.418 3.137 0
;Rainfall 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010 3CH1010	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:10:00 00:30:00 00:40:00 01:00:00 01:00:00 01:00:00 01:20:00 01:30:00 01:50:00 02:10:00 02:20:00 02:30:00 02:30:00 02:40:00 02:50:00 03:00:00	$\begin{array}{c} 3.755\\ 4.478\\ 5.593\\ 7.551\\ 11.936\\ 30.856\\ 122.142\\ 35.237\\ 18.159\\ 12.238\\ 9.269\\ 7.492\\ 6.309\\ 5.465\\ 4.831\\ 4.338\\ 3.942\\ 3.5617\\ 0\end{array}$
;Rainfall 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025 3CH1025	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:20:00 00:30:00 00:50:00 01:10:00 01:10:00 01:20:00 01:20:00 01:50:00 01:50:00 02:10:00 02:20:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	$\begin{array}{c} 4 & .358 \\ 5 & .202 \\ 6 & .506 \\ 8 & .801 \\ 13 & .954 \\ 36 & .302 \\ 144 & .693 \\ 41 & .479 \\ 21 & .286 \\ 144 & .308 \\ 10 & .818 \\ 8 & .732 \\ 7 & .345 \\ 6 & .356 \\ 5 & .615 \\ 5 & .6$
<pre>,Rainfall 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050 3CH1050</pre>	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:10:00 00:20:00 00:30:00 00:50:00 01:10:00 01:20:00 01:20:00 01:30:00 01:30:00 01:50:00 02:10:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	$\begin{array}{c} 4.828\\ 5.766\\ 7.214\\ 9.763\\ 15.496\\ 40.401\\ 161.471\\ 46.17\\ 23.66\\ 15.89\\ 12.006\\ 9.687\\ 8.146\\ 7.047\\ 6.224\\ 5.583\\ 5.07\\ 4.649\\ 0\end{array}$
,Rainfall 3CH1100	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	$\begin{array}{c} 0:0:0:0\\ 0:10:0\\ 0:10:0\\ 0:20:0\\ 0:30:0\\ 0:50:0\\ 0:50:0\\ 0:10:0\\ 0:10:0\\ 0:10:0\\ 0:120$	$\begin{array}{c} 5.339\\ 6.376\\ 7.977\\ 10.797\\ 17.136\\ 45.128\\ 178.107\\ 51.056\\ 26.163\\ 17.571\\ 13.277\\ 10.712\\ 9.008\\ 7.793\\ 6.883\\ 6.174\\ 5.607\\ 5.142\\ 0\end{array}$
;Rainfall 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH1120 3CH120 3CH120 3CH12120 3CH120 3CH120 3CH120 3CH120 3CH120	(mm/hr)	01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000 01/01/2000	00:00:00 00:10:00 00:20:00 00:30:00 00:50:00 01:10:00 01:20:00 01:20:00 01:30:00 01:50:00 02:20:00 02:20:00 02:30:00 02:40:00 02:50:00 03:00:00	6.406801 7.6512 9.572401 12.9564 20.5632 54.1536 213.7284 61.2672 31.3956 21.0852 15.9324 12.8544 10.8096 9.351601 8.259601 7.4088 6.7284 6.170401 0
[REPORT] ;;Reportin INPUT CONTROLS SUBCATCHME NODES ALL LINKS ALL	ng Optic YES NO NTS ALI	ons		
[TASS] Subcatch Subca	S1 S10 S12 S12 S12 S12 S15 S16 S17 S18 S2 S2 S2 S2 S2 S3 S4 S5 S6 S6 S7 S8 S9 S1 S17 S22 S3 S4 S5 S6 S7 S8 S7 S8 S7 S8 S7 S8 S12 S12 S12 S12 S12 S12 S12 S12 S12 S12	-	Business P. Existing Business P. ResidentTa SWM Block ResidentTa Existing Business P. ResidentTa Existing Existing Existing Existing Existing Existing Existing Existing SWM Block Existing SWM Block Existing SWM Block Existing Storm Manh Storm Manh Storm Manh	ark l l ark l ark l sole ble ble ble ble ble ble

Node Node Node Node Node Node Node Node	STM-11 STM-2 STM-2 STM-2 STM-3 STM-4 STM-5 STM-6 STM-6 STM-6 STM-7 STM-8 STM-7 STM-8 STM-7 STM-8 STM-7 STM-8 STM-7 STM-8 STM-7	1 5 1 1 1 2 3 1	Storm	Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Cility acility acility Sewer			
[MAP] DIMENSIONS UNITS		474269.923 Meters	65	5039753.75065	476642.4	5535	5042358.49235
[COORDINATE: ;;Node	s]	X-Coord		Y-Coord			
[VERTICES] ;;Link ;;		X-Coord		Y-Coord			
[POLYGONS] ;;Subcatchmo;;;	ent	X-Coord		Y-Coord			
;;Storage N	ode	X-Coord		Y-Coord			
[SYMBOLS] ;;Gage ;;		X-Coord		Y-Coord			

Page 5 of 5

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

****** Element	**** = Co	**** ount	
Number Number Number Number	of of of of	rain gages subcatchments nodes links pollutants	1 22 37 34
Number	of	land uses	ŏ

****** Raingage Summary

Name	Data Source			Data Type	Recording Interval
Rainfall	24SCS100			INTENSITY	15 min.
**************************************	Area	Width	%Imperv	%Slope	Rain Gage
	3.49	784.30	92.86	2.0000	Rainfall
ST_SU2 S10	218.39	1690.00	0.30	1.5500	Rainfall
J2 S11	17.42	3918.64	92.86	2.0000	Rainfall
St_SU3 	2.58	580.14	64.30	2.0000	Rainfall
St_SU8 	1.09	245.61	92.86	2.0000	Rainfall
St SU5 S15	0.50	112.59	28.57	3.0000	Rainfall
SWMF-3 S16	0.26	58.32	28.57	3.0000	Rainfall
SWMF-4 S17	1.19	267.62	64.30	2.0000	Rainfall
St SU9 518	8.97	2017.82	92.86	2.0000	Rainfall
St SU6 S19	0.65	145.98	64.30	2.0000	Rainfall
St SU/ S2	0.12	132.49	1.55	4.9800	Rainfall
S2_1	3.39	132.49	1.55	4.9800	Rainfall
S1M-7 S21	6.90	1552.95	92.86	2.0000	Rainfall
St SUI S22 Ch CUI	1.82	409.48	64.30	2.0000	Rainfall
S1 504 S3 OF1	0.76	190.34	7.39	7.6200	Rainfall
S4_2 STM_TA	8.44	325.22	0.00	9.7050	Rainfall
S4_3	0.29	11.18	0.00	9.7050	Rainfall
S5 STM-13	1.27	137.91	2.51	8.6900	Rainfall
S6 OFF	23.09	368.32	0.67	5.7800	Rainfall
S7 SWME-1	0.75	169.13	28.57	3.0000	Rainfall
S8 SWMF=2	0.61	136.62	28.57	3.0000	Rainfall
STM-12	4.32	217.02	20.44	5.4400	Rainfall

****	*******
NT = -1 =	Q
Node	Summary
****	*******

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
J2 OF1 OF2 OF4 OF5 ST_SU2 St_SU3 St_SU3 St_SU3 St_SU5 St_SU5 St_SU5 St_SU5 St_SU5 St_SU5 St_SU5 St_SU5 STM-10 STM-11 STM-11 STM-13 STM-13 STM-15 STM-15 STM-2 STM-2 STM-3 STM-2 STM-3 STM-4 STM-5 STM-6 STM-6 STM-9 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-1 STM-2 STM-1 STM-1 STM-2 STM-1 STM-	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALE STORAGE	$\begin{array}{c} 45.52\\ 45.52\\ 50.65\\ 50.65\\ 51.33\\ 52.83\\ 52.83\\ 52.83\\ 57.24\\ 57.04\\ 59.00\\ 58.68\\ 52.62\\ 53.93\\ 55.65\\ 56.05\\ 57.43\\ 50.000\\ 48.26\\ 49.24\\ 51.50\\ 57.43\\ 5$	$\begin{array}{c} 4 & 5.0 \\ 1 & 1.00 \\ 0 & 0.00 \\ 0 & 0.00 \\ 0 & 0.00 \\ 0 & 5$		

Link Summary Name From Node %Slope Roughness To Node Type Length _____ C1 0.3490 0.0130 STMH-1 SWME-1 CONDUIT 31.8 STM-10 STM-9 CONDUIT 240.6 0.3499 C11 0.3495 C12 0.3496 0.0130 STM-11 STM-10 CONDUIT 102.4 0.0130 STM-12 STM-11 CONDUIT 59.2 0.0130 0.3496 C13 0.3501 C14 0.3498 C15 0.3497 C2 0.3502 C3 STM-13 STM-12 CONDUIT 292.5 0.0130 STM-14 STM-13 CONDUIT 178.1 0.0130 STM-15 STM-14 CONDUIT 113.8 0.0130 STM-2 STMH-1 CONDUIT 13.1 0.0130 J2 OF1 CONDUIT 35.0 C3 4.5697 0.0350

01000 000010						
Full Conduit Flow	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels
 Cl	CIRCULAR	1.20	1.13	0.30	1.20	1
2.30 C10 4.18	CIRCULAR	1.50	1.77	0.38	1.50	1
C11 4 18	CIRCULAR	1.50	1.77	0.38	1.50	1
C12	CIRCULAR	1.05	0.87	0.26	1.05	1
C13	CIRCULAR	1.05	0.87	0.26	1.05	1
C14	CIRCULAR	1.05	0.87	0.26	1.05	1
C15	CIRCULAR	0.75	0.44	0.19	0.75	1
C2	CIRCULAR	1.20	1.13	0.30	1.20	1
2.31 C3	TRAPEZOIDAL	1.00	6.00	0.64	9.00	1
C3_1	CIRCULAR	0.90	0.64	0.23	0.90	1
C3_2	CIRCULAR	1.05	0.87	0.26	1.05	1
C4	CIRCULAR	0.75	0.44	0.19	0.75	1
C5	CIRCULAR	1.50	1.77	0.38	1.50	1
4.10 C6	CIRCULAR	1.50	1.77	0.38	1.50	1
4.10 C7	CIRCULAR	1.35	1.43	0.34	1.35	1
C8	CIRCULAR	1.50	1.77	0.38	1.50	1
C9 4.18	CIRCULAR	1.50	1.77	0.38	1.50	1

Analysis Options Flow Units Process Models: Rainfall/Runoff RDII Groundwater Flow Routing Ponding Allowed Water Quality Water Quality How Routing Method Starting Date Ending Date Antecedent Dry Days Report Time Step Dry Time Step Dry Time Step Routing Time Step Maximum Trials Number of Threads Head Tolerance	CMS YES NO NO NO NO NO NO NO NO NO NO	
Runoff Quantity Continuity Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	Volume hectare-m 31.610 0.000 25.649 5.919 0.065 -0.076	Depth mm 103.200 0.000 83.740 19.325 0.213

Flow Routing Continuity Dry Weather Inflow Wet Weather Inflow RDII Inflow RDII Inflow External Outflow Evaporation Loss Evaporation Loss Initial Stored Volume Final Stored Volume Continuity Error (%)	Volume hectare-m 0.000 5.919 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.135	Volume 10^6 ltr 0.000 59.193 0.000 0.000 53.080 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Highest Continuity Errors		
Node St SU5 (-1.74%)		

Node	STM-4 (1.70%)	
Node	STM-2A (1.54%)	
Node	STM-7 (1.44%)	
Node	STM-11 (1.05%)	

Time-Step Critical Elements

November 2023

November 2023

None	
Highest Flow Instability Indexes Link OL1 (39) Link OL7 (37) Link OL7 (37) Link OL6 (36) Link OL8 (36)	

****** Most Frequent Nonconverging Nodes Convergence obtained at all time steps.

Routing Time Step Summary		
Minimum Time Step Average Time Step % of Time in Steady State Average Iterations per Step % of Steps Not Converging	 0.50 1.00 0.00 2.00 0.00	sec sec sec
1.000 - 0.871 sec 0.871 - 0.758 sec 0.758 - 0.660 sec 0.660 - 0.574 sec 0.574 - 0.500 sec	99.77 0.04 0.05 0.03 0.11	dh dh dh dh dh

****** Subcatchment Runoff Summary

Total Total Total Total Imperv Perv Total Total Peak Runoff Precip Runon Evap Infil Runoff Subcatchment mm mm mm mm mm

Subcatch mm	ment mm	10^6	ltr	mm CMS	mm	mm 	mm	mm
S1			103	.20	0.00	0.00	13.42	94.70
12.94 S10	88.70		3.09 103	1.09	0.860 0.00	0.00	97.35	0.30
5.56 S11	5.86		12.79 103	2.31	0.057	0.00	13.42	94.70
12.94 S12	88.70		15.45 103	5.47	0.860	0.00	34.29	65.53
15.87 S14	68.30		1.76	0.76	0.662	0.00	13.42	94.70
12.94 S15	88.70		0.97	0.34	0.860	0.00	70.60	29.06
32.53 S16	32.53		0.16	0.12	0.315	0.00	70.60	29.06
32.53 S17	32.53		0.08	0.06	0.315	0.00	34.29	65.53
15.87 S18	68.30		0.81	0.35	0.662	0.00	13.42	94.70
12.94 S19	88.70		7.96	2.81	0.860	0.00	34.29	65.53
15.87 S2	68.30		0.44	0.19	0.662	0.00	74.16	1.57
28.10 S2 1	29.67		0.04	0.03	0.287	0.00	83.57	1.57
18.13 S21	19.70		0.67	0.27	0.191	0.00	13.42	94.70
12.94 S22	88.70		6.12	2.17	0.860	0.00	34.29	65.53
15.87	68.30		1.24	0.54	0.662	0.00	71.09	7.52
24.89 S4 2	32.41		0.25	0.19	0.314	0.00	83.21	0.00
20.12 S4 3	20.12		1.70	0.80	0.195	0.00	83.21	0.00
20.12 S5	20.12		0.06	0.03	0.195	0.00	76.88	2.55
23.99 S6	26.54		0.34	0.24	0.257	0.00	89.40	0.68
13.15 \$7	13.84		3.19	0.88	0.134	0.00	70.60	29.06
32.53 \$8	32.53		0.24	0.19	0.315	0.00	70.60	29.06
32.53	32.53		0.20	0.15	0.315	0.00	65.37	20.83
16.85	37.68		1.63	0.66	0.365			

		Average	Maximum	Maximum	Time	of Max	
Reported		Donth	Donth	UCT	Occu	or max	Maw
Depth	TIDO	Motora	Motora	Motora	davia	brimin	Max
Meters	туре	Meters	Meters	Meters	uays		
 .T2	TUNCTION	0.06	0.28	45 80	0	12.00	
0.28	OUTEALL	0.00	0.20	43.00	0	12.00	
0.28	OUTFALL	0.05	0.20	44.20 E2.00	0	12.00	
0.00	OUTFALL	0.00	0.00	55.62	0	00:00	
0.00	OUTFALL	0.00	0.00	50.65	0	00:00	
0.00	OUTFALL	0.00	0.00	50.62	0	00:00	
0.00	OUTFALL	0.00	0.00	51.35	0	00:00	
St_SU1 0.17	STORAGE	0.00	0.17	52.97	0	12:01	
ST_SU2 0.26	STORAGE	0.00	0.26	53.24	0	12:01	
St_SU3 0.11	STORAGE	0.00	0.11	54.13	0	12:01	
St_SU4 0.34	STORAGE	0.00	0.34	53.17	0	12:00	
St_SU5 0.42	STORAGE	0.00	0.42	57.26	0	12:02	
St_SU6	STORAGE	0.00	0.26	57.50	0	12:01	
St_SU7	STORAGE	0.00	0.28	57.32	0	12:00	
St_SU8	STORAGE	0.00	0.32	59.32	0	12:00	
St_SU9	STORAGE	0.00	0.29	58.97	0	12:00	
STM-1	STORAGE	0.00	0.00	52.62	0	00:00	
STM-10	STORAGE	0.08	1.63	54.62	0	12:07	
STM-11	STORAGE	0.08	1.58	54.93	0	12:07	
STM-12	STORAGE	0.05	1.19	55.19	0	12:02	
1.10							

STM-13	STORAGE	0.04	1.09	56.12	0	12:04
STM-14	STORAGE	0.04	0.74	56.39	0	12:00
0.74 STM-15	STORAGE	0.32	0.59	56.64	0	11:52
0.59 STM-2	STORAGE	0.70	1.41	49.82	0	12:07
1.39 STM-2A	STORAGE	0.19	2.46	51.68	0	12:07
2.45 STM-3	STORAGE	0.00	0.00	53.99	0	00:00
0.00 STM-4	STORAGE	0.05	2.01	52.22	0	12:07
1.92 STM-5	STORAGE	0.73	1.58	50.98	0	12:05
1.57 STM-6	STORAGE	0.41	1.87	51.69	0	12:05
1.86 STM-7	STORAGE	0.10	2.92	53.74	0	12:05
2.91 STM-8	STORAGE	0.11	1.49	53.12	0	12:08
1.48 STM-9	STORAGE	0.09	1 51	53 66	0	12.07
1.51 STMH_1	STORACE	0.73	1 37	19 74	0	15.02
1.37	510RAGE	0.75	1.57			10.02
2.08	STORAGE	0.08	2.09	52.09	0	12:07
SWMF-1	STORAGE	0.81	1.48	49.74	0	15:04
SWMF-2	STORAGE	0.83	1.49	50.73	0	15:06
1.49 SWMF-3	STORAGE	0.10	1.48	52.98	0	12:20
1.48 SWMF-4 1.48	STORAGE	0.01	1.48	58.91	0	12:03

Node Inflow Summary

			Maximum	Maximum			Lateral	
Total	Flow		Lateral	Total	Time	of Max	Inflow	
INIIOW	Balance		Inflow	Inflow	0ccu	irrence	Volume	
Volume Node	Error	Туре	CMS	CMS	days	hr:min	10^6 ltr	
J2		JUNCTION	2.310	2.456	0	12:00	12.8	
33.7 OF1	0.007	OUTFALL	0.192	2.644	0	12:00	0.248	
33.9 OF2	0.000	OUTFALL	0.028	0.256	0	12:03	0.0584	
0.317 OF4	0.000	OUTFALL	0.034	0.034	0	12:00	0.0361	
0.0361 OF5	0.000	OUTFALL	0.880	0.880	0	12:00	3.19	
0F6	0.000	OUTFALL	0.000	1.620	0	12:20	0	
	0.000	STORAGE	2.166	2.166	0	12:00	6.12	
ST_SU2	-0.339	STORAGE	1.094	1.094	0	12:00	3.09	
3.09 St_SU3	-1.6/6	STORAGE	5.465	5.465	0	12:00	15.4	
St_SU4	-0.385	STORAGE	0.536	0.536	0	12:00	1.24	
	-0.088	STORAGE	0.343	0.427	0	12:00	0.968	
St_SU6	-1 710	STORAGE	2.814	2.814	0	12:00	7.95	
St_SU7	-1./10	STORAGE	0.191	0.191	0	12:00	0.443	
	0.015	STORAGE	0.759	0.759	0	12:00	1.76	
1.76 St_SU9	0.332	STORAGE	0.350	0.350	0	12:00	0.812	
0.812 STM-1	0.268	STORAGE	0.000	0.000	0	00:00	0	
STM-10	0.000 Itr	STORAGE	0.000	4.105	0	12:02	0	
STM-11	1.050	STORAGE	0.000	4.149	0	12:00	0	
STM-12	1.058	STORAGE	0.661	2.080	0	12:00	1.63	
STM-13	-0.204	STORAGE	0.236	1.590	0	12:00	0.337	
4.43 STM-14	-0.097	STORAGE	0.804	1.386	0	12:00	1.7	
4.09 STM-15	-0.258	STORAGE	0.000	0.184	0	12:00	0	
0.754 STM-2	0.4/1	STORAGE	0.000	2.522	0	12:05	0	
9.09 STM-2A	-0.749	STORAGE	0.000	2.550	0	12:04	0	
9.23 STM-3	1.561	STORAGE	0.000	0.000	0	00:00	0	
STM-4	1 720	STORAGE	0.000	0.865	0	12:01	0	
3.14 STM-5	1.728	STORAGE	0.000	5.189	0	12:00	0	
STM-6	0.144	STORAGE	0.000	4.930	0	12:01	0	
15.9 STM-7	-0.830	STORAGE	0.266	4.951	0	12:00	0.667	
STM-8	1.464	STORAGE	0.000	4.367	0	12:03	0	
STM-9	0.092	STORAGE	0.000	4.152	0	12:02	0	
STMH-1	-0.019	STORAGE	0.000	2.507	0	12:04	0	
STMH-3	0.070	STORAGE	0.000	0.864	0	12:02	0	
SWMF-1	0.059	STORAGE	0.187	2.648	0	12:02	0.245	
SWMF-2	0.056	STORAGE	0.151	5.556	0	12:00	0.198	
	0.002	STORAGE	0.124	4.422	0	12:03	0.163	
	-0.003	STORAGE	0.064	0.571	0	12:00	0.0843	
U.258	0.002							

**** Node Surcharge Summary

No nodes were surcharged.

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

Post-Development (Condition: Option 2	- 1:100 year 24-hour	 SCS Storm – Output

		Average	Aug	Fuan	Evfi1	Mayimum	May	Time
of Max	Maximum	Welume	Dont	Dont	Dont	Volumo	Dont	1 Inte
Occurrenc	e Outflow	vorume	FCIIC	FCIIC	FCIIC	VOIUme	FCIIC	
hr:min	CMS	1000 m²	FUII	LOSS	LOSS	1000 m²	FUII	days
St_SU1 12:0T	1.704	0.001	0.1	0.0	0.0	0.259	34.5	0
ST_SU2	0.865	0.000	0.2	0.0	0.0	0.129	51.5	0
St_SU3	4 695	0.001	0.1	0.0	0.0	0.376	21.5	0
St_SU4	4.000	0.000	0.4	0.0	0.0	0.075	67.8	0
St_SU5	0.529	0.000	0.3	0.0	0.0	0.066	84.7	0
12:02 St SU6	0.279	0.001	0.2	0.0	0.0	0.335	52.3	0
12:0T St SU7	2.215	0.000	0.3	0.0	0.0	0.026	55.5	0
12:00 St SU8	0.190	0.001	0.4	0.0	0.0	0.138	64.1	0
12:00 St SU9	0.743	0 000	0.3	0 0	0.0	0.058	58.6	0
12:00 STM-1	0.348	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	0.000	0.000	0.0	0.0	0.0	0.000	0.0	0
12:07	4.047	0.000	2.4	0.0	0.0	0.002	49.1	0
STM-11 12:07	4.105	0.000	2.3	0.0	0.0	0.002	45.6	0
STM-12 12:02	2.182	0.000	1.7	0.0	0.0	0.001	36.4	0
STM-13 12:04	1.512	0.000	1.8	0.0	0.0	0.001	43.8	0
STM-14	1 368	0.000	1.5	0.0	0.0	0.001	25.4	0
STM-15	0.100	0.000	10.1	0.0	0.0	0.001	19.0	0
STM-2	0.190	0.001	17.8	0.0	0.0	0.002	35.9	0
STM-2A	2.507	0.000	4.7	0.0	0.0	0.003	60.4	0
12:07 STM-3	2.522	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 STM-4	0.000	0.000	1.6	0.0	0.0	0.002	61.4	0
12:07 STM-5	0.864	0.001	18.6	0.0	0.0	0.002	40.2	0
12:05 STM-6	5.165	0.000	15.2	0.0	0.0	0.002	68.6	0
12:05 STM-7	4.904	0 000	2.6	0 0	0.0	0.003	78 9	0
12:05 STM-8	4.930	0.000	3.9	0.0	0.0	0.002	54 3	0
12:08	4.329	0.000	5.5	0.0	0.0	0.002	54.5	0
12:07	4.088	0.000	2.9	0.0	0.0	0.002	51.1	0
STMH-1 15:02	2.503	0.001	18.1	0.0	0.0	0.002	33.9	0
STMH-3 12:07	0.907	0.000	2.8	0.0	0.0	0.002	71.5	0
SWMF-1 15:04	0.067	3.585	52.4	0.0	0.0	6.765	98.8	0
SWMF-2	0.119	7.123	54.3	0.0	0.0	12.988	99.0	0
SWMF-3	1 620	0.326	5.9	0.0	0.0	5.432	98.8	0
SWMF-4	1.020	0.000	0.4	0.0	0.0	0.115	97.4	0
12:00	0.231							

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
OF1	97.87	0.203	2.644	33.934
OF2	4.48	0.043	0.256	0.317
OF4	6.29	0.003	0.034	0.036
OF5	48.26	0.040	0.880	3.195
OF6	96.73	0.095	1.620	15.598
System	50.72	0.383	5.001	53.079

C1	1.00	0.02	0.00	0.00	0.90	0.08	0.00	0.00	0.05
C10	1.00	0.05	0.09	0.00	0.86	0.00	0.00	0.00	0.41
C11	1.00	0.02	0.01	0.00	0.96	0.02	0.00	0.00	0.44
0.00 C12	1.00	0.02	0.00	0.00	0.01	0.00	0.00	0.97	0.00
0.00 C13	1.00	0.02	0.30	0.00	0.68	0.00	0.00	0.00	0.95
0.00 C14	1.00	0.03	0.01	0.00	0.95	0.01	0.00	0.00	0.68
0.00 C15	1.00	0.03	0.00	0.00	0.01	0.00	0.00	0.96	0.01
0.00	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.00
0.00	1.00	0.02	0.00	0.00	0.11	0.87	0.00	0.00	0.01
0.00	1 00	0 02	0 00	0 00	0.36	0 00	0 00	0.62	0 35
0.00-	1 00	0.02	0.00	0.00	0.30	0.00	0.00	0.02	0.22
0 00-2	1.00	0.02	0.01	0.00	0.74	0.00	0.00	0.25	0.55
C4	1.00	0.02	0.00	0.00	0.01	0.00	0.00	0.97	0.00
C5	1.00	0.02	0.00	0.00	0.87	0.11	0.00	0.00	0.00
C6	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.22
C7	1.00	0.02	0.02	0.00	0.57	0.00	0.00	0.38	0.65
C8	1.00	0.02	0.16	0.00	0.48	0.34	0.00	0.00	0.50
C9 0.00	1.00	0.05	0.01	0.00	0.94	0.00	0.00	0.00	0.65

File

Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
C1 C10 C11 C12 C13 C14 C2 C3 C3 C3 C4	11.88 0.01 0.11 0.18 0.00 10.17 0.30 0.18 0.30 0.01 0.06 0.24 0.01 0.01	$\begin{array}{c} 11.98\\ 0.13\\ 0.11\\ 0.13\\ 0.08\\ 0.01\\ 10.22\\ 0.30\\ 0.35\\ 0.30\\ 0.06\\ 0.25\\ 0.28\\ 0.01\\ 0.01\\ 0.01\\ \end{array}$	$\begin{array}{c} 14.61\\ 0.01\\ 0.13\\ 0.11\\ 0.13\\ 0.08\\ 11.98\\ 0.35\\ 10.22\\ 0.30\\ 0.01\\ 0.06\\ 0.25\\ 0.01\\ 0.01\\ 0.01\\ \end{array}$	$\begin{array}{c} 0.25\\ 0.01\\ 0.01\\ 0.28\\ 0.01\\ 0.25\\ 0.01\\ 0.36\\ 0.33\\ 0.27\\ 0.26\\ 0.30\\ 0.12\\ 0.01\\ \end{array}$	$\begin{array}{c} 0.03\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.29\\ 0.01\\ 0.06\\ 0.24\\ 0.01\\ 0.01\\ \end{array}$

Analysis begun on: Mon Nov 27 09:33:13 2023 Analysis ended on: Mon Nov 27 09:33:18 2023 Total elapsed time: 00:00:05

Page 3 of 3

Stakeholder Consultation

Notice of Study Commencement

Clarence-Rockland

Rockland West Secondary Plan

Dear resident(s),

The City is currently undergoing a Secondary Plan exercise for the "Rockland West Secondary Plan" lands of Rockland, which are located south of Highway 17, west of Poupart Road, in which your property is located. The City of Clarence-Rockland has initiated a **Municipal Class Environmental** Assessment (Class EA) to complete a Secondary Plan for the development of Special Study Area 1. J.L. Richards and Associates Ltd. were hired by the City to undertake such a study that will be completed at the end of 2021.

Meeting Date: Wednesday, December 22nd, 2021 from 5:00pm - 6:00 pm via Teams Meeting invite. This meeting will be used to discuss how the EA and Secondary Plan process may affect your lands. Due to the current COVID-19 Pandemic, the meeting will need to occur online. Please reply by-email to Marc Rivet or Marie-Eve Belanger for a link to the Teams Meeting Invite, by Monday, December 20th, at the latest. Contact information for Marc and Marie-Eve is provided below.

How Will This Affect Me?

A Secondary Plan guides how Official Plan policies are put in place key areas of the City. A Secondary Plan will provide specific schedules and policies for the expansion lands where we need a detailed direction for land use, infrastructure, transportation, environment, urban design and similar matters that are required beyond the general framework by the Official Plan.

The study area comprises approximately 36 hectares of lands and is designated as Special Study Area 1. The Official Plan requires the preparation of special studies to determine the lands' future development potential. The Secondary Plan will follow the Municipal Class EA and Planning Act process to establish a coordinated planning solution for the development of this area.

The purpose of the study is to create a long-term infrastructure plan for water, wastewater, stormwater, and transportation servicing for the development of Special Study Area 1. This process will help to identify system requirements and assist with long-term capital planning.

Public and agency consultation is a key element of the process and input will be sought throughout the study to inform the evaluation and selection of the preferred servicing strategy.

How Do I Get More Information?

A mailing list for notification of study status and opportunities for public input is being compiled. If you wish to add your contact information to the study mailing list, or if you have any questions

regarding the study, please contact one of the people listed below. Project information will also be available to the public on the City's website at a later date.

Study updates and Notices will be posted on the City's website and advertised in local media throughout the process. A Public Open House is anticipated for Spring 2022.

Mark Rivet, RPP, MCIP	Marie-Eve Belanger			
Senior Planner	Manager of Development			
J.L. Richards & Associates Limited	City of Clarence-Rockland			
864 Lady Ellen Place	1560 Laurier Street			
Ottawa, Ontario K1Z 5M2	Rockland, Ontario K4K 1P7			
Phone: 343-803-4533	Phone: 613-446-6022 ext. 2250			
Email: mrivet@jlrichards.ca	Email: mbelanger@clarence-rockland.com			

This study is being conducted according to the requirements of Phases 1 and 2 of the Municipal Class Environmental Assessment which is an approved process under the Environmental Assessment Act. This notice originally issued December 10th, 2021.

City of Clarence-Rockland Rockland West Secondary Plan Landowners Meeting

Presented by: Marc Rivet, MCIP, RPP Date: December 22, 2021 JLR No.: 31097-000

Secondary Plan and Class EA Integration

- What is a secondary plan
 - A Secondary Plan is an area-specific land use plan prepared as an amendment to the Official Plan
 - The proposed development of these lands will be approved by an amendment to the Official Plan prior to any development
 - The Secondary Plan will follow the Municipal Class Environmental Assessment (EA) and Planning Act process to establish a coordinated planning solution for development of this area
- How EA's fit within secondary plan framework
 - Develop a Master Servicing Plan for water, wastewater, stormwater, and transportation services needed to support developing the lands
 - Confirms both on-site and off-site servicing needs, including required upgrades to existing infrastructure potentially impacted by the new development (e.g., "upstream" or "downstream" of connection points)
 - The Master Plan will guide future infrastructure projects in the area

Anticipated Schedule & Opportunities for Input

* In process, currently undertaking background studies (market needs, environmental constraints) Public Information Centres (PICs) will be held regarding preliminary alternatives (1), the evaluation process (2), and the preliminary preferred solution (3)

Types of Class EA Projects

Municipal Projects can involve:

Water projectsWastewateStormwater projectsRoad and

Wastewater projects Road and transit projects

Projects have various levels of complexity:

- Schedule A projects are limited in scale and are pre-approved.
 - They have minimal adverse effects and often involve normal operation and maintenance activities.
- Schedule A+ projects are pre-approved with public notification.
- Schedule B projects have the potential for some adverse impacts.
 - There is mandatory contact with public and review agencies to ensure they are aware of the project and that their concerns are addressed.
 - E.g., expanding an existing sewage pumping station.
- Schedule C projects have the potential for significant adverse impacts.
 - There is mandatory full screening process including filing of an Environmental Study Report (ESR).
 - Generally, for construction of new facilities and major expansions.
 - E.g., constructing a new wastewater treatment plant.

Municipal Class EA Process Overview

- Under the Environmental Assessment Act, municipalities <u>must</u> consider potential environmental effects before a potential infrastructure project begins.
- The streamlined MEA Class EA process allows municipalities to consider impacts without having to obtain project-specific approval under the Environmental Assessment Act.
- This study is being conducted in accordance with Phases 1 and 2 of the MEA Class EA process to fulfill the requirements for <u>Schedule B</u> projects

For more information on the Class Environmental Assessment Process visit the Government of Ontario website (<u>https://www.ontario.ca/page/class-environmental-assessments-approved-class-ea-information</u>).

Planning Framework

- Current Context
 - The Official Plan currently designates the lands Special Study Area (SSA1)
 - A **Secondary Plan** is required to permit development (land use mix undetermined)
 - To implement the Secondary Plan, an Official Plan Amendment (OPA) will be required, in accordance with Planning Act Requirements
- Drafting Secondary Plan
 - Background research required to determine the appropriate land use and servicing needs to support the development
 - Alternatives will be proposed for the land use of the Secondary Plan
 - Public Consultations at various stages including statutory meeting for OPA
- The Official Plan Amendment
 - The Official Plan Amendment will amend the City of Clarence-Rockland's Urban Area Official Plan to add the Secondary Plan
 - This amendment will be forwarded to the United Counties of Prescott and Russell for approval

Next Steps

Complete Stage 1

- Market Needs Study (Barry Nabatian, Shore-Tanner & Associates) in process
- Natural Environment Report (Michelle Lavictoire, Bowfin Environmental Consulting)
- Seek direction on land use mix from City of Clarence-Rockland City Council
- Servicing Study
- Transportation Impact Study
- Opportunities and Constraints Analysis
- Existing conditions background report

Consultation

If you have any questions regarding the study, please contact one of the people listed below. We welcome your feedback.

Marc Rivet, RPP, MCIP	Marie-Eve Belanger
Senior Planner	Manager of Development
J.L. Richards & Associates Limited	City of Clarence-Rockland
864 Lady Ellen Place	1560 Laurier Street
Ottawa, ON K1Z 5M2	Rockland, Ontario K4K 1P7
Phone: 613-867-8528	Phone: 613-446-6022 ext. 2250
Email: mrivet@jlrichards.ca	Email: mbelanger@clarence-rockland.com

Questions?

Contact Information: Marc Rivet Senior Planner 613-867-8528 mrivet@jlrichards.ca

Thank you!

Contact Information: Marc Rivet Senior Planner 613-867-8528 mrivet@jlrichards.ca

Cité de Clarence-Rockland City Rockland West Secondary Plan / Plan secondaire Rockland - Est Landowners Meeting / Rencontre avec les propriétaires

Presented by / Présenté par: Marc Rivet, Alex Elgin and Eric Forhan Date: April 07, 2022 JLR No.: 31097-000

The purpose of this meeting / But de la rencontre

- Overview of the Rockland West Secondary Plan (RWSP) Lands / Aperçu des terrains du plan secondaire – East de Rockland
- Overview of the MCEA and Secondary Plan Process and Project Status / Aperçu du processus EE et du plan secondaire et état du projet
- Summary of comments from Landowners Meeting #1 / Résumé des commentaires de la première réunion avec les propriétaires
- Presentation of the Market Needs Study / Présentation de l'étude de besoin du marché
- 5. Recommended Land Uses / Utilisations du sol recommandées
- Next steps Planning Committee (May 4, 2022) / Prochaine étapes - Comité d'aménagement (4 mai 2022)

Rockland West Secondary Plan

Constraints Mapping – Developable Area Cartographie des contraintes – Zone aménageable

Rockland West Secondary Plan

Municipal Class EA Process Overview / Aperçu du processus d'évaluation environnementale municipale de portée générale

Under the Environmental Assessment Act, municipalities <u>must</u> consider potential environmental effects before a potential infrastructure project begins. / En vertu de la Loi sur les évaluations environnementales, les municipalités doivent tenir compte des effets environnementaux potentiels avant le début d'un projet d'infrastructure.

The streamlined MEA Class EA process allows municipalities to consider impacts without having to obtain project-specific approval under the Environmental Assessment Act. / Le processus simplifié d'évaluation environnementale de portée générale permet aux municipalités de prendre en compte les impacts sans avoir à obtenir une approbation spécifique au projet en vertu de la Loi sur les évaluations environnementales.

This study is being conducted in accordance with **Phases 1 and 2** of the MEA Class EA process to fulfill the requirements for <u>Schedule B</u> projects / Cette étude est menée conformément aux phases 1 et 2 du processus d'évaluation environnementale de portée générale afin de répondre aux exigences des projets de l'annexe B.

For more information on the Class Environmental Assessment Process visit the Government of Ontario website (<u>https://www.ontario.ca/page/class-environmental-assessments-approved-class-ea-information</u>).

Secondary Plan – Planning Act process Plan Secondaire – Loi sur l'aménagement du territoire - processus

Drafting Secondary Plan

- Background research required to determine the appropriate land use and servicing needs to support the development
- Staff are seeking Council direction on the desired land uses.
- Alternatives will be proposed for the land use of the Secondary Plan
- **Public Consultations** at various stages including statutory meeting for OPA

The Official Plan Amendment

- Follow *Planning Act* requirements for Public Meetings, Notices etc.
- The Official Plan Amendment will amend the City of Clarence-Rockland's Urban Area Official Plan to add the Secondary Plan
- This amendment will be forwarded to the United Counties of Prescott and Russell for approval

Rédaction du plan secondaire

- Recherche de base nécessaire pour déterminer l'utilisation appropriée des terrains et les besoins en services pour soutenir le développement.
- Le personnel cherche à obtenir l'avis du Conseil sur les utilisations du sol souhaitées.
- Des alternatives seront proposées pour l'utilisation des terrains du plan secondaire.
- Consultations publiques à différentes étapes, y compris la réunion statutaire pour l'APO.

La modification du plan officiel

- Respecter les exigences de la Loi sur l'aménagement du territoire en matière de réunions publiques, d'avis, etc.
- La modification du plan officiel modifiera le plan officiel de l'aire urbaine de la Cité de Clarence-Rockland pour y ajouter le plan secondaire.
- Cette modification sera transmise aux Comtés unis de Prescott et Russell pour approbation.

For more information on the Class Environmental Assessment Process visit the Government of Ontario website (<u>https://www.ontario.ca/page/class-environmental-assessments-approved-class-ea-information</u>).

Schedule & Opportunities for Input / Calendrier prévu et possibilités de participation

分

We are here ... We are seeking Council's approval of uses based on the market needs study, to complete the existing conditions background studies (still in process).

Nous sommes ici... Nous cherchons à obtenir l'approbation du conseil sur l'étude de marché afin de compléter les études nécessaires.

Summary of Comments from Landowners Meeting #1

Sommaire des commentaires reçus de la rencontre no. 1 avec les propriétaires

Theme	Comments/ Questions	Response
Secondary Plan Area (Background) Market Study	Has the study area changed?	The designation is Special Study Area 1 and the boundary was confirmed during the 5-year review of the Official Plan (OPA-16)
	Why is the area shaped as is?	The shapes originates from the previous Official Plan document. The shape derives from a planned bypass road that reflects the topographical conditions.
	Is there a proposed road on the lands?	The Official Plan's schedule shows a Collector Road but, the preferred location will be confirmed through the Environmental Assessment and Secondary Plan process.
Market Study	Who is the Consultant?	Shore Tanner & Associates (previous Secondary Plan experience in Rockland)

Summary of Comments from Landowners Meeting #1

Theme	Comments/ Questions	Response
Land Use	Will there be one recommend land use for the study area?	There will be a variety of land uses and they will be distributed on the lands as recommended by the Market Needs Study and the remaining background studies (environmental, servicing). There is sufficient residential land, and a shortfall of employment type uses. Development will need to align with the Secondary Plan.
	What will the land uses be?	
Property Ownership	How many fields belong to a specific landowner?	Parcel boundaries and details are found on UCPR's mapping software.
	What input do landowners have in the process?	Landowners have rights under the Environmental Assessment Act and Planning Act (e.g. appeal process). The public can participate in statutory meetings and workshop sessions (tbd) and provide written comments.

Summary of Comments from Landowners Meeting #1

Theme	Comments/ Questions	Response
	What are the tax impacts of the study for landowners?	Tax evaluation is based on existing use not based on future uses or zoning.
Financial, Taxation and Valuation	What is the value of residential land versus employment land?	The value varies with market demand. Generally, serviced industrial lands are higher value (e.g. MPAC assessment can assist with confirmation).
	Will the City pay for a stormwater pond on a landowner's property?	This will depend on how the lands are development (e.g. developers or City involvement) are beyond the scope of the Secondary Plan.

Background Studies / Études de base

- Since December, 2021, as a part of Phase 1 of the EA, we have been investigating:
 - a. Market Demand and desirable land uses
 - b. Environmental Conditions (Natural Constraints)
 - c. Existing servicing
 - d. Transportation conditions and options.
- Council approval of the land uses is required to complete Phase 1 of the EA process (Existing conditions).
- Next Step: Phase 2 of EA Alternative Concepts.

 Depuis décembre 2021, dans le cadre de la phase 1 de l'évaluation environnementale, nous avons mené des recherches sur:

a. La demande de marché et les utilisations souhaitables des terres.

b. Les conditions environnementales (contraintes naturelles)

c. Les services existants

- d. Les conditions et les options de transport
- L'approbation des utilisations du sol par le Conseil est nécessaire pour achever la phase 1 du processus d'évaluation environnementale (conditions existantes).
- Prochaine étape : Phase 2 de L'EE concepts alternatif

SHORE TANNER & ASSOCIATES MARKET STUDY – ÉTUDE DE MARCHÉ

Shore Tanner & Associates Market Study – Étude de marché

Major Findings:

- Businesses will direct to more affordable land options in nearby urban centres, such as the City of Clarence-Rockland
- Urban growth will need to be supported by a variety of industries, especially knowledge-based and innovative businesses.
- Industrial businesses, which are less compatible with sensitive land use and rely on efficient business logistics and transport, are most suitable due to its location at the edge (within) the urban area and its proximity to County Road 17.
- Creating more land for employment use (e.g. business park, office, innovation).
- Creating more demand for additional retail uses

Following land uses for inclusion in the RWSP lands, in the order of priority:

- Industrial/Business Park
- Office Buildings
- Shopping Destination (Retail)

Principales constatations :

- Les entreprises se dirigeront vers des options de terrains plus abordables dans les centres urbains voisins, comme la Cité de Clarence-Rockland.
- La croissance urbaine devra être soutenue par une variété d'industries, en particulier les entreprises fondées sur le savoir et l'innovation.
- Les entreprises industrielles, qui sont moins compatibles avec une utilisation sensible des terres et qui dépendent d'une logistique et d'un transport efficaces, sont les plus appropriées en raison de leur emplacement à la limite (à l'intérieur) de la zone urbaine et de leur proximité avec le chemin de Comté 17.
- La création d'un plus grand nombre de terrains destinés à l'emploi (par exemple, parc d'affaires, bureaux, innovation).
- Création d'une demande accrue pour des utilisations commerciales supplémentaires

Les utilisations du sol suivantes à inclure dans les terrains du RWSP, par ordre de priorité :

- Zone industrielle/parc d'affaires
- Immeubles de bureaux
- Destination commerciale (détail)

PLANNING ANALYSIS ANALYSE URBANISTIQUE

Recommended Land Uses / Utilisation du sol <u>recommandé</u>

Considering other factors, stemming from our review of policy, guidelines, on-going environmental assessments, and the environmental background report:

- Provincial Policy Statement
 (PPS) 2020
- The Ministry of the Environment, Conservation and Parks Land Use Compatibility D-6 Compatibility Guideline
- UCPR Official Plan
- The Official Plan (OP) of the Urban Area of the City of Clarence Rockland

Figure 2 Priority Economic Drivers. Source: Economic Development Strategy

Recommended Land Uses / Utilisation du sol recommandée

- Section 8.1.1 of the City's OP requires the completion of a Secondary Plan prior to any development being approved in the Special Study Area 1.
- Through this Secondary Plan, Staff aim to align the land use designations with the land use designations already found in the City's OP/ Expansion Lands Secondary Plan
- The following designations from the City's OP are being considered and recommended for integration through the RWSP:
 - Business Park
 - Service Commercial
 - Tourist Recreation Commercial
 - Environmental Protection Area
 - Major Open Space

- La section 8.1.1 du plan officiel de la Cité exige la réalisation d'un plan secondaire avant l'approbation de tout aménagement dans la zone d'étude spéciale 1.
- Par le biais de ce plan secondaire, le personnel vise à harmoniser les désignations d'utilisation du sol avec celles qui figurent déjà dans le plan secondaire du PO/terrains d'expansion de la ville.
- Les désignations suivantes du plan officiel de la Cité sont prises en compte et il est recommandé de les intégrer dans le plan secondaire des terrains d'expansion :
 - Parc d'affaires
 - Service commercial
 - Commerces touristiques et récréatifs
 - Zone de protection de l'environnement
 - Espace ouvert majeur

CITY OF CLARENCE-ROCKLAND ECONOMIC DEVELOPMENT STRATEGY / ÉTUDE DE DÉVELOPPEMENT ÉCONOMIQUE

Aligning with the Economic Development Strategy Aligner avec la Stratégie de développement économique

Economic Development Priorities:

- Hospitality and Tourism, and Retail Trade (High Priority)
- Professional, Scientific and Technical Services (Medium Priority)
- Value-Added Agriculture
- Light Industrial (Medium Priority)
- Construction

Priorité du développement économique:

- Hôtellerie, tourisme et commerce de détail (priorité élevée)
- Services professionnels, scientifiques et techniques (priorité moyenne)
- Agriculture à valeur ajoutée
- Industrie légère (priorité moyenne)
- Construction

Priority Economic Drivers

PRELIMINARY FINDINGS FROM BOWFIN ENVIRONMENTAL CONSULTING INC / RÉSULTATS PRÉLIMINAIRES DE L'ÉTUDE DE BOWFIN

Preliminary Environmental Conditions Report

- Environmental / Natural Features found on-site / Caractéristiques environnementales et naturelles sur le site:
 - Fish Habitat / Habitat de poisson
 - Cultural Thickets / Forests
 (e.g. butter nut)
- Bowfin Environmental Consulting Inc. offers three (3) opportunities for enhancement, including integration with an Urban Part type landscape. / Bowfin offre 3 possibilités de mise en valeur, y compris l'integration à un paysage de type urbanine.
- Parks and Open Space and Environmental Protection Area designations. / Parcs et espaces ouverts et zones de protection de l'environnement

Figure 5- Enhancement Opportunity Areas, Rockland West Secondary Plan lands, prepared by Bowfin Environmental Consulting Inc.

SUMMARY / SOMMAIRE

Land use designation / Utilisation du sol

PRECEDENTS / PRÉCÉDENTS

Business Park – Parc d'affaire

Service Commercial – Commerce de service

Tourist Recreation Commercial – Touristique récréatif commercial

Major open space – Escape ouvert

NEXT STEPS- PROCHAINE ÉTAPES

Consultation

Next Steps

- Seek Council direction on the desired land uses stemming from Shore Tanner's Report / Background Research (April/ May).
- Complete Phase 1 of the EA background studies / existing conditions.
- Working Group Meeting (County, Municipal, Conservation Authority).
- Proceed with Phase 2 of the EA alternative concepts.
- The public will continue to be notified and involved in accordance with the statutory requirements of the Municipal Class EA and Planning Act approvals process for public meetings.

- Demander l'avis du Conseil sur les utilisations souhaitées du sol découlant du rapport de Shore Tanner et des recherches de base (avril/mai).
- Achever la phase 1 des études de base de l'évaluation environnementale et des conditions existantes.
- Réunion du groupe de travail (comté, municipalité, office de protection de la nature).
- Passer à la phase 2 de l'EE concepts alternatifs.
- Le public continuera d'être informé et de participer conformément aux exigences légales du processus d'approbation de l'ÉE municipale de portée générale et de la Loi sur l'aménagement du territoire pour les réunions publiques.

Consultation

If you have any questions regarding the study, please contact one of the people listed below. We welcome your feedback.

Si vous avez des questions concernant l'étude, svp contacter une des personnes listées ci-bas. Nous apprécions vos commentaires.

Marc Rivet, RPP, MCIP	Marie-Eve Bélanger
Senior Planner	Manager of Development
J.L. Richards & Associates Limited	City of Clarence-Rockland
864 Lady Ellen Place	1560 Laurier Street
Ottawa, ON K1Z 5M2	Rockland, Ontario K4K 1P7
Phone: 613-867-8528	Phone: 613-446-6022 ext. 2250
Email: mrivet@jlrichards.ca	Email: mbelanger@clarence-rockland.com

Questions?

Contact Information: Marc Rivet Senior Planner 613-867-8528 mrivet@jlrichards.ca

www.jlrichards.ca

Thank you!

Contact Information: Marc Rivet Senior Planner 613-867-8528 mrivet@jlrichards.ca

www.jlrichards.ca

CITY OF CLARENCE-ROCKLAND ROCKLAND WEST SECONDARY PLAN

INTEGRATED PLANNING ACT AND ENVIRONMENTAL ASSESSMENT ACT PROCESS

NOTICE OF PUBLIC MEETING #1

Wednesday, May 4th, 2022, 7:00pm VIA ZOOM MEETING OR FACEBOOK LIVE

An integrated Planning Act and Environmental Assessment Act process has been initiated for the Clarence-Rockland Rockland West Secondary Plan. The study area is located south of County Road 17, west of Poupart Road.

The purpose of the Secondary Plan process is to detail the land use, transportation, and servicing infrastructure related to this area. The Secondary Plan will be implemented through an Official Plan Amendment to guide future development within the study area.

At this public meeting, Staff will recommend to Planning Committee a list of land uses

that are appropriate for the Secondary Plan lands based on the findings of the Market Needs Study, the site's physical conditions, and City of Clarence's Rockland's policies and strategic direction for economic development. There will be a short presentation which will be used to outline the report and explain the recommended land uses: **Business Park**, **Service Commercial**, **Tourist Recreational Commercial**, **Environmental Protection** and **Major Open Space**.

The market study is available for review online at www.clarence-rockland.com/en/hotelde-ville/Plan_Secondaire___Ouest_de_Rockland.aspx or with the following shortened link <u>https://bit.ly/3JB0ZRf</u>

Public consultation is an important part of the process. We are interested in hearing your comments and feedback. If you would like to be added to the mailing list for this project or would like to attend the zoom meeting, please contact the Project Leads:

Marie-Eve Bélanger, Manager of Development

City of Clarence-Rockland 1560, Laurier Street Rockland, ON K4K 1P7 613-446-6022 ext: 2250 Email: mbelanger@clarencerockland.com

Marc Rivet, RPP, MCIP Senior Planner

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2 Phone: 343-803-4533 Email: mrivet@jlrichards.ca

CITÉ DE CLARENCE-ROCKLAND PLAN SECONDAIRE - OUEST DE ROCKLAND PROCESSUS INTÉGRÉ EN VERTU DE LA LOI SUR L'AMÉNAGEMENT DU TERRITOIRE ET DE LA LOI SUR LES ÉVALUATIONS ENVIRONNEMENTALES

AVIS DE RÉUNION PUBLIQUE No. 1

Le mercredi 4 mai 2022, 19h00 RENCONTRE SUR ZOOM OU FACEBOOK LIVE

Le processus intégré en vertu de la Loi sur l'aménagement du territoire et de la Loi sur les évaluations environnementales pour la création d'un Plan Secondaire pour l'ouest de Rockland fut enclenché. Le secteur à l'étude comprend généralement les terrains au sud du chemin de Comté 17 et à l'ouest de la montée Poupart.

Le but du présent projet vise à détailler les l'utilisation des terrains, le système de transport et l'infrastructure de viabilisation pour les terrains en question. Le Plan secondaire sera implémenté à partir d'un amendement au Plan Officiel et visera à orienter l'aménagement de ce secteur. SSA1

Lors de cette réunion publique...

L'étude de marché peut être consulté en ligne sur notre site à www.clarencerockland.com/fr/hotel-de-ville/Plan_Secondaire___Ouest_de_Rockland.aspx ou avec le lien court suivant : <u>https://bit.ly/3NXvyDR</u>

La consultation du public représente une partie importante du projet et vos commentaires nous sont appréciés. Si vous désirez être ajouté à la liste d'envoi pour ce projet ou si vous souhaitez participer à la rencontre zoom, veuillez communiquer avec les chargées de projet :

Marie-Eve Bélanger, MCIP, RPP Gestionnaire du développement

Cité de Clarence-Rockland 1560 rue Laurier Rockland, ON K4K 1P7 Tel: 613-446-6022 ext: 2250 mbelanger@clarence-rockland.com

Marc Rivet, RPP, MCIP Urbaniste sénior

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2 Tel: 343-803-4533 mrivet@jlrichards.ca

Appendix M

Public Information Centre

CITY OF CLARENCE-ROCKLAND ROCKLAND WEST SECONDARY PLAN

INTEGRATED PLANNING ACT AND ENVIRONMENTAL ASSESSMENT ACT PROCESS

NOTICE OF PUBLIC INFORMATION CENTER

Tuesday, December 5th, 2023, 5:00pm-8:00pm Optimist Performance Hall, 1535 Du Parc Avenue, Rockland, ON K4K 1C3

An integrated Planning Act and Environmental Assessment Act process has been initiated for the Clarence-Rockland Rockland West Secondary Plan. The study area is located south of County Road 17, west of Poupart Road.

The purpose of the Secondary Plan process is to detail the land use, transportation, and servicing infrastructure related to this area. The Secondary Plan will be implemented through an Official Plan Amendment to guide future development within the study area over the next 20 years. J.L. Richards & Associates Limited has been retained to complete the Class EA Secondary Plan.

Public and agency consultation is a key component throughout the Class EA process. The City is planning to conduct one Public Information Centre to present the work undertaken to date, including recommendations as to the preferred land uses and proposed servicing solutions for the area. All those interested in the project are invited to attend the Public Information Center.

Public consultation is an important part of the process. We are interested in hearing your comments and feedback. If you would like to be added to the mailing list for this project, please contact the Project Leads:

Marie-Eve Bélanger, Manager of Development

City of Clarence-Rockland 1560, Laurier Street Rockland, ON K4K 1P7 613-446-6022 ext: 2250 Email: mbelanger@clarencerockland.com

Marc Rivet, RPP, MCIP **Senior Planner**

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2 Phone: 343-803-4533 Email: mrivet@jlrichards.ca

The City of Clarence-Rockland **Rockland West Secondary Plan**

December 5th, 2023

I.L.Richards ENGINEERS · ARCHITECTS · PLANNERS

La Cité de Clarence-Rockland Plan secondaire de Rockland-Ouest

5 décembre, 2023

I.L.Richards ENGINEERS · ARCHITECTS · PLANNERS

Introduction

Objectives:

- Establish a policy framework for the lands ٠
- Provide the basis for future development •
- Ensure the efficient use of the land and infrastructure

Main Issues to be Considered:

- Preferred land-use zones for current growth trends
- Existing transportation and servicing ٠ infrastructure capabilities
- Environmental considerations \bullet

Introduction

Objectifs:

- Établir un cadre stratégique pour les • terrains
- Fournir la base pour un développement futur
- Assurer l'utilisation efficace du terrain et de l'infrastructure

Principales questions à prendre en considération:

- Zones d'utilisation des sols privilégiées pour les tendances de croissance actuelles
- Capacités existantes en matière • d'infrastructures de transport et de services
- Considérations environnementales

Secondary Plan Class EA Process

Phase 1 Identification of Problem or Opportunity	Phase 2 Evaluation of Alternative Solutions and Identification of Recommended Solutions	Selection of Preferred Solution Following Consultation Activities	Ph Re
Notice of Study Commencement July 2021	Ongoing Public and Agency Consultation Throughout Study	Public Information Centre December 2023	Not C
		WE ARE HERE	

✓ Phase 1 Report evaluated existing systems and proposed alternative solution concepts for the Rockland West Secondary Plan lands

✓ Alternative Solutions Concepts shortlisted and reviewed against an evaluation matrix.

✓ Preliminary assessment of **Costing** for each alternative solution.

✓ **Public Consultation** with general public, stakeholder agencies and City staff.

ase 2 port

ice of Study ompletion

Processus d'Étude Environnementale du Plan Secondaire

Phase 1 Identification d'un problème ou d'une opportunité	Phase 2 Évaluation des solutions alternatives et identification des solutions recommandées	Sélection de la solution privilégiée à la suite d'activités de consultation	Ra Ia
Avis de début d'étude Juillet 2021	Consultation continue du public et des organismes tout au long de l'étude	Centre d'information du public Décembre 2023	Avis (
		NOUS SOMMES LÀ	

✓ Rapport de la phase 1 a évalué les systèmes existants et proposés des solutions alternative pour les terrains du Plan secondaire de Rockland Ouest ;

✓ Concepts de solutions alternatives présélectionnés et examinés en fonction d'une matrice d'évaluation.

Évaluation préliminaire des Coûts pour chaque solution alternative.

✓ Consultation publique avec le grand public, les agences et le personnel de la Cité.

pport de phase 2

d'achèvement le l'étude

Phase 1 – Problem/Opportunity Statement

"The Secondary Plan will follow the Municipal Class Environmental Assessment (EA) and Planning Act process to establish a coordinated planning solution for development of this area.

A Secondary Plan could present economic opportunities for the city and its residents through the establishment of acceptable land use designations leading to an increase in business and commerce in the region. In developing the Secondary Plan, there is an opportunity to consider impacts to neighboring properties, impacts to natural and social environment, climate change, and growth opportunities."

Phase 1 – Énoncé du problème ou de l'occasion

"Le plan secondaire suivra le processus d'évaluation environnementale municipale de portée générale (EE) et de la Loi sur l'aménagement du territoire afin d'établir une solution de planification coordonnée pour l'aménagement de ce secteur.

Un plan secondaire pourrait offrir des possibilités économiques à la ville et à ses résidents grâce à l'établissement de désignations acceptables de l'utilisation des terres, ce qui entraînerait une augmentation des affaires et du commerce dans la région. Lors de l'élaboration du plan secondaire, il est possible de tenir compte des répercussions sur les propriétés voisines, des répercussions sur l'environnement naturel et social, des changements climatiques et des possibilités de croissance."

Phase 1 – Existing Water, Sanitary **& Stormwater Servicing**

Rockland to Clarence Water Distribution System Pressure Zones

- Next to Pressure Zone 1, receives potable water from the Rockland Water **Treatment Plant**
- One sanitary sewer, two pump stations and forcemains, privately owned sewers in commercial developments
- Storm water runoff is overland via sheet flow or drainage ditch to downstream receivers

Phase 1 – Services d'eau, sanitaires et d'eaux pluviales existants

Zones de pression du réseau de distribution d'eau de Rockland à Clarence

- À côté de la zone de pression 1, reçoit de l'eau potable de l'usine de traitement de l'eau de Rockland
- Un égout sanitaire, deux stations de pompage et des conduites de refoulement, des égouts privés dans les développements commerciaux
- Le ruissellement des eaux pluviales se fait par voie terrestre via l'écoulement de surface ou fossé de drainage jusqu'aux récepteurs en aval

Phase 1 – Existing Transportation

Existing Intersections :

- County Road 17 /Carmen Bergeron ullet
- **Carmen Bergeron/Richelieu**
- Richelieu/Poupart \bullet
- Poupart/Walmart Driveway

Phase 1 – Transport Existant

Intersections Existantes:

- chemin de Comté 17 /Carmen Bergeron
- Carmen Bergeron/Richelieu
- Richelieu/Poupart
- Poupart/ Allée Walmart

rmen Bergeron ieu

Phase 1 – Environmental and Land-use Considerations

Low potential for disruption to the natural environment, recommendations to minimize environmental impact:

- Develop water feature setback
- Use cultural thickets for endangered • and threatened species habitat

Recommended land-uses for Study Area:

- Industrial/Business Park
- Office Building
- Shopping

Desktop Vegetation Community Analysis (Bowfin Environmental Impact Study, 2022)

Phase 1 – Considérations relatives à l'environnement et à l'utilisation des terres

Faible potentiel de perturbation de l'environnement naturel, recommandations pour minimiser l'impact sur l'environnement :

- Développer une marge de recul pour les cours d'eau
- Utiliser des fourrés naturels pour l'habitat d'espèces en voie de disparition et menacées

Utilisations recommandées des terres pour la zone d'étude:

- Parc Industriel /d'affaires
- Immeubles de bureaux
- Magasin de détail

Analyse des communautés végétales (étude d'impact environnemental par Bowfin, 2022)

Phase 1 – Concept Options

Phase 1 – Options conceptuelles

Phase 1 – Concept Option Shortlisting

Description	Avantages	Disadvantages	Carried Forward?
Option 1	 Preserves natural waterway corridor Addition of business park, service commercial, commercial core, and high and medium density residential land use zones High land-use diversity Pedestrian focused main street included in commercial core 	 Comparatively complex traffic flow Increase in traffic with the addition of major and minor collector roads 	✓
Option 2	 Largest percent of environmental overlay Addition of business park and commercial core land use zones Pedestrian focused main street included in commercial core 	 Small environmental and open space overlay Increase in traffic with the addition of major and minor collector roads Least land-use diversity No land allotted to residential land use Comparatively complex traffic flow Future development overlay does not specify immediate land use 	×
Option 3	 Preserves natural waterway corridor Addition of business park, service commercial land, and medium density residential land use Comparatively simple traffic flow Largest percent of high-demand business park land use 	 No pedestrian focused commercial core Increase in traffic with the addition of major and minor collector roads Minimal land-use diversity 	\checkmark
Option 4 – Do Nothing	 Preserves the natural environment of SSA1 	 Does not support economic, social, or cultural growth in the City Does not align with Secondary Plan problem statement 	×

Phase 1 – Présélection d'options conceptuelles

Description	Avantages	Inconvénients	Reporté?
Option 1	 Préserve le corridor naturel de la voie navigable Ajout d'un parc d'affaires, d'un parc commercial de services, d'un noyau commercial et de zones d'utilisation du sol résidentielles à haute et moyenne densité Grande diversité d'utilisation des terres Rue principale axée sur les piétons inclus dans le noyau commercial 	 Flux de trafic relativement complexe Augmentation de la circulation avec l'ajout de routes collectrices principales et secondaires 	•
Option 2	 Le plus grand pourcentage de superposition environnementale Ajout d'un parc d'affaires et de zones d'utilisation du sol central commercial Rue principale axée sur les piétons inclus dans le noyau commercial 	 Superposition de petits espaces environnementaux et ouverts Augmentation de la circulation avec l'ajout de routes collectrices principales et secondaires Diversité minimale de l'utilisation des terres Aucun terrain n'est alloué à l'usage résidentiel Flux de trafic relativement complexe La superposition des aménagements futurs ne précise pas l'utilisation immédiate des terres 	×
Option 3	 Préserve le corridor naturel des cours d'eau Ajout d'un parc d'affaires, d'un terrain commercial de service et d'une utilisation résidentielle de densité moyenne Flux de trafic relativement simple Le plus grand pourcentage d'utilisation des terres des parcs d'affaires à forte demande 	 Pas de centre commercial axé sur les piétons Augmentation de la circulation avec l'ajout de routes collectrices principales et secondaires Diversité minimale de l'utilisation des terres 	✓
Option 4 – Ne rien faire	Préserve l'environnement naturel de SSA1	 Ne soutient pas la croissance économique, sociale ou culturelle de la ville Ne correspond pas à l'énoncé du problème du plan secondaire 	×

Phase 2 – Water Servicing Evaluation

Analysis for concept options 1 & 3:

- 300 mm watermain loop proposed •
- Three proposed connections to the existing • distribution system:
 - Easterly cul-de-sac on De La Baie Rd. ۲
 - East of Richelieu St. +/- 40 m south of De La ٠ Baie Rd.
 - Intersection of Richelieu St. and Poupart Rd. ٠
- 175 L/s is available everywhere with existing • system except southeast corner (high elevation)
- 283 L/s required to reach target fire flow Pressures are within MECP guidelines for
- ullet• average and maximum day demand

Phase 2 – Évaluation du réseau d'eau

Analyse des options de concept 1 et 3 :

- Boucle d'aqueduc de 300 mm proposée ullet
- Trois projets de raccordement au réseau de ulletdistribution existant :
 - Cul-de-sac vers l'est sur le chemin De La • Baie
 - À l'est de la rue Richelieu, +/- 40 m au sud du ulletchemin De La Baie
 - Intersection de la rue Richelieu et du chemin Poupart
- 175 L/s est disponible partout avec le système existant, sauf dans le coin sud-est (haute élévation)
- 283 L/s nécessaires pour atteindre le débit ciblé •
- Les pressions sont conformes aux lignes • directrices du MECP pour la demande journalière moyenne et maximale

Phase 2 – Sanitary Servicing Evaluation

Analysis for concept options 1 & 3:

- Wastewater discharges to pumping station northeast of Laurier St. and Laporte St. (SPS-3)
- Wastewater to be conveyed through 200 mm and 300 mm pipes, with smaller diameters upstream
- Invert elevation of \pm 46.5m was set at the pumping station to have sufficient cover upstream

Phase 2 – Évaluation du réseau sanitaire

Analyse des options de concept 1 et 3 :

- Rejets d'eaux usées à la station de pompage au nord-est des rues Laurier et Laporte (SPS-3)
- Les eaux usées doivent être acheminées par des tuyaux de 200 mm et 300 mm, avec des diamètres plus petits en amont
- Une élévation de +/- 46,5 m a été fixée à la station de pompage afin d'avoir une couverture suffisante en amont

Phase 2 – Storm Water Evaluation

Analysis for concept options 1 & 3:

- Business Park and Commercial areas to release to the minor system and detain the 1:100 year on-site
- Residential areas to have dual drainage with minor system and major overland flow system
- Three wet ponds for quantity and quality control and one dry pond for quantity control only proposed
- Minor piped system varies up to 1500 mm diameter sewer

Phase 2 – Évaluation des eaux pluviales

Analyse des options de concept 1 et 3 :

- Le parc d'affaires et les zones commerciales seront libérés dans le système mineur et détiendront le 1:100 ans sur le site.
- Les zones résidentielles doivent être dotées d'un double système de drainage avec un système mineur et un système d'écoulement de surface majeur
- Trois étangs humides pour le contrôle de la quantité et de la qualité et un étang sec pour le contrôle de la quantité seulement est proposés
- Le système de canalisations mineures varie jusqu'à 1500 mm de diamètre d'égout pluvial.

Phase 2 – Transportation Evaluation

Proposed Roundabout Level of Service

Street 1/Street 2 (single lane)

Street 1	AM Peak (PM Peak)				
Street 7	Critical Movement			Intersection	
Sileel 2	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	F(F)	218.2(312.6)	NBL(NBL)	186.8(178.2)	F(F)
Option 3	A(A)	9.8(9.1)	WBL(WBL)	5.2(4.6)	A(A)

Street 1/Street 2 (two lane)

Ctreet 4		AM F	Peak (PM Peak)	
Street 17		Critical Movement		Intersection	
Street 2	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	C(B)	26.9(16.0)	EBL(EBL)	11.0(7.5)	B(A)

Street 1/Street 3 (single lane)

Street 1	AM Peak (PM Peak)				
Street 17	Critical Movement		Intersection		
Street 3	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	B(B)	11.5(10.6)	EBL(EBL)	5.6(5.3)	A(A)
Option 3	A(A)	8.2(7.9)	EBL(EBL)	5.3(4.5)	A(A)

Street 3/Street 4 (single lane)

Street 21	AM Peak (PM Peak)				
Street 3/		Critical Movement		Intersection	
Street 4	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	A(A)	9.8(9.2)	SBL(SBL)	6.0(5.8)	A(A)
Option 3	A(A)	7.7(7.6)	SBL(SBL)	4.5(4.4)	A(A)

Street 3/Poupart (single lane)

Street 2/	AM Peak (PM Peak)				
Boupart		Critical Movem	Intersect	tion	
Poupart	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	B(B)	10.8(10.0)	SBL(SBL)	4.6(4.5)	A(A)
Option 3	A(A)	7.6(7.5)	SBL(SBL)	4.5(4.1)	A(A)

Phase 2 – Évaluation des transports

Niveau de service proposé pour les carrefours giratoires

Volumes de trafic prévus aux heures de pointe

Rue 1/Rue 2 (voie unique)

Street 4	AM Peak (PM Peak)				
Street 7	Critical Movement			Intersecti	on
Sileel Z	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	F(F)	218.2(312.6)	NBL(NBL)	186.8(178.2)	F(F)
Option 3	A(A)	9.8(9.1)	WBL(WBL)	5.2(4.6)	A(A)

Rue 1/Rue 2 (deux voies)

Ctreet 4	AM Peak (PM Peak)				
Street 17		Critical Movement		Intersection	
Street 2	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	C(B)	26.9(16.0)	EBL(EBL)	11.0(7.5)	B(A)

Rue 1/Rue 3 (voie unique)

Street 1 / Street 3	AM Peak (PM Peak)				
	Critical Movement			Intersection	
	LOS	avg. delay (s)	Movement	Delay (s)	LOS
Option 1	B(B)	11.5(10.6)	EBL(EBL)	5.6(5.3)	A(A)
Option 3	A(A)	8.2(7.9)	EBL(EBL)	5.3(4.5)	A(A)

Rue 3/Rue 4 (voie unique)

Street 3 / Street 4	AM Peak (PM Peak)					
		Critical Movement			Intersection	
	LOS	avg. delay (s)	Movement	Delay (s)	LOS	
Option 1	A(A)	9.8(9.2)	SBL(SBL)	6.0(5.8)	A(A)	
Option 3	A(A)	7.7(7.6)	SBL(SBL)	4.5(4.4)	A(A)	

Rue 3/Poupart (voie unique)

Street 3 / Poupart	AM Peak (PM Peak)					
		Critical Movement			Intersection	
	LOS	avg. delay (s)	Movement	Delay (s)	LOS	
Option 1	B(B)	10.8(10.0)	SBL(SBL)	4.6(4.5)	A(A)	
Option 3	A(A)	7.6(7.5)	SBL(SBL)	4.5(4.1)	A(A)	

Phase 2 – Evaluation Matrix

	Option 1	Optior
	 Greater waste generation and air and noise pollution (due to higher populations) 	 Minimal potential impact to na
Natural Environment	 Minimal potential impact to natural heritage environment 	 Inclusion of environmental and
	 Inclusion of environmental and open space overlay 	
Evaluation	Less Preferred	Preferi
Social and Cultural Environment	 Highest increase in traffic through Study Area Inclusion of pedestrian friendly commercial main corridor (lesser demand land use) 	 Greatest increase in highest-c area
Evaluation	Less Preferred	Prefer
Technical Feasibility	 Three (3) water connections to existing distribution system Expected max day water demand plus fire flow that the existing distribution system can accomplish is less than required fire flow target Residential areas will require dual drainage with minor system and major overland flow system for storm water Business Park and Commercial areas will release to the minor system and detain the 1:100 year on-site Four (4) stormwater ponds required Single-lane roundabouts to manage traffic at all intersections except street 1/street 2 Two-lane intersection to manage projected traffic at street 1/street 2 	 Three (3) water connections to system Expected max day water dem existing distribution system carequired fire flow target Residential areas will require a system and major overland flot Business Park and Commercing minor system and detain the 1 Four (4) stormwater ponds reconstructions
Evaluation	Less Preferred	Prefer
Financial Considerations	 Increase in economic activity in region 	 Increase in economic activity
	 High servicing and transit network capital cost 	 High servicing and transit network
Evaluation	Less Preferred	Less Pret
Overall Evaluation	Less Preferred	Preferi

n 3

atural heritage environment

d open space overlay

red

demand business park

red

o existing distribution

and plus fire flow that the an accomplish is less than

dual drainage with minor ow system for storm water

ial areas will release to the 1:100 year on-site quired anage traffic at all

red

in region

work capital cost

ferred

red

Phase 2 – Matrice d'évaluation

	Option 1	Opt
Environnement naturel	 Augmentation de la production de déchets et de la pollution atmosphérique et sonore (en raison de l'augmentation de la population) Impact potentiel minimal sur l'environnement du patrimoine naturel Inclusion d'une superposition d'environnement et d'espace ouvert 	 Impact potentiel minimal patrimoine naturel Inclusion d'une superpos d'espace ouvert
Évaluation	Moins Préféré	Pré
Environnement social et culturel	 Plus forte augmentation de la circulation dans la zone d'étude Inclusion d'un corridor principal commercial convivial pour les piétons (utilisation du sol à faible demande) 	 Plus forte augmentation zone de parc d'affaire
Évaluation	Moins Préféré	Pré
Faisabilité technique	 Trois (3) raccordements d'eau au réseau de distribution existant La demande maximale d'eau par jour et le débit d'incendie que le réseau de distribution existant peut atteindre sont inférieurs à l'objectif de débit d'incendie requis Les zones résidentielles nécessiteront un double système de drainage avec un système mineur et un système d'écoulement de surface majeur pour les eaux pluviales Le parc d'affaires et les zones commerciales seront libérés dans le système mineur et conserveront le 1:100 ans sur le site Quatre (4) bassins d'eaux pluviales requis Carrefours giratoires à voie unique pour gérer la circulation à toutes les intersections, à l'exception de la rue 1 et de la rue 2 Intersection à deux voies pour gérer la circulation prévue à l'intersection de la rue 1 et de la rue 2 	 Trois (3) raccordements distribution existant La demande maximale d d'incendie que le réseau peut atteindre sont inférie d'incendie requis Les zones résidentielles système de drainage ave système d'écoulement de eaux pluviales Le parc d'affaires et les z libérés dans le système r 1:100 ans sur le site Quatre (4) bassins d'eau Des carrefours giratoires la circulation à toutes les
Évaluation	Moins Préféré	Pré
Considérations financières	 Augmentation de l'activité économique dans la région Coûts d'investissement élevés pour l'entretien et le réseau de transport en commun 	 Augmentation de l'activité région Coûts d'investissement é réseau de transport en ce
Évaluation	Moins Préféré	Moins
Évaluation globale	Moins Préféré	Pré

tion 3

sur l'environnement du

sition d'environnement et

éféré de la demande dans la

éféré

d'eau au réseau de

l'eau par jour et le débit de distribution existant eurs à l'objectif de débit

nécessiteront un double ec un système mineur et un e surface majeur pour les

zones commerciales seront mineur et conserveront le

x pluviales requis à voie unique pour gérer intersections

éféré

té économique dans la

élevés pour l'entretien et le commun s **Préféré**

éféré

Phase 2 – Proposed Project Phasing

Phase 1:

- North of Street 2 •
- ۲ in area
- All water connections ullet
- **Connection to SPS-3** •
- All storm water ponds •

Phase 2:

- South of Street 2 •
- and sewers

All roadways, watermains, sewers

Remaining roadways, watermains
Phase 2 – Phasage du projet proposé

Phase 1:

- Au nord de la rue 2
- Toutes les routes, les conduites \bullet d'eau principales, les égouts dans le secteur
- Tous les raccordements d'eau ullet
- Connexion à SPS-3 •
- Tous les bassins d'eaux pluviales ullet

Phase 2:

- Au sud de la rue 2 ۲
- Routes, conduites d'eau ullet

principales et égouts restants

Next Steps

- Finalize Phase 1 & 2 of the Master Plan process. This includes:
 - \checkmark The identification and in-depth evaluation of the preferred identified in Phase 1
 - \checkmark Obtain and evaluate public, stakeholders and agency solution.
- Prepare Official Plan Amendment to the City of Clarence-Rockland's Urban Area Official Plan for inclusion of the Secondary Plan.
- Issue Notice of Completion.
- Finalize Class EA after 30-day public ٠ review period.

strategies and actions to address the problems and opportunities

comments and confirm preferred

Prochaines étapes

- Finaliser les phases 1 et 2 du processus du plan directeur. Il s'agit notamment de:
 - ✓ L'identification et l'évaluation identifiés dans la Phase 1
 - ✓ Recueillir et évaluer les commentaires du public, des confirmer la solution préférée.
- Préparer la modification du Plan officiel au Plan officiel de l'aire urbaine de la Cité de Clarence-Rockland en vue de l'inclusion du Plan secondaire.
- Émettre un avis d'achèvement.
- Finaliser l'évaluation environnementale de portée générale après une période d'examen public de 30 jours.

approfondie des stratégies et des actions privilégiées pour résoudre les problèmes et les opportunités

agences et des organismes et

Contacts

Marie-Eve Bélanger Manager of Development **City of Clarence-Rockland** 1560, Laurier Street Rockland, ON K4K 1P7 613-446-6022 ext: 2250 mbelanger@clarence-rockland.com

Marc Rivet, RPP, MCIP Senior Planner J.L. Richards and Associates Limited 864 Lady Ellen Place Ottawa, ON K1Z 5M2 343-803-4533 mrivet@jlrichards.ca

Contacts

Marie-Eve Bélanger Gestionnaire du développement Cité de Clarence-Rockland 1560, rue Laurier Rockland, ON K4K 1P7

613-446-6022 ext: 2250 mbelanger@clarence-rockland.com Marc Rivet, RPP, MCIP **Urbaniste Sénior** J.L. Richards and Associates Limited 864 Lady Ellen Place Ottawa, ON K1Z 5M2 343-803-4533 mrivet@jlrichards.ca

www.jlrichards.ca

Ottawa

864 Lady Ellen Place Ottawa ON Canada K1Z 5M2 Tel: 613 728-3571

ottawa@jlrichards.ca

North Bay

501-555 Oak Street E North Bay ON Canada P1B 8L3 Tel: 705 495-7597

northbay@jlrichards.ca

Kingston

203-863 Princess Street Kingston ON Canada K7L 5N4 Tel: 613 544-1424

kingston@jlrichards.ca

Hawkesbury

326 Bertha Street Hawkesbury ON Canada K6A 2A8 Tel: 613 632-0287

hawkesbury@jlrichards.ca

Sudbury

314 Countryside Drive Sudbury ON Canada P3E 6G2 Tel: 705 522-8174

sudbury@jlrichards.ca

Guelph

107-450 Speedvale Ave. West Guelph ON Canada N1H 7Y6 Tel: 519 763-0713

Timmins

P4N 7C5

834 Mountjoy Street S

Timmins ON Canada

timmins@jlrichards.ca

Tel: 705 360-1899

guelph@jlrichards.ca

JLR Logo is a Registered Trademark ® 2009, all rights are reserved